
Second International Workshop on

Reconfigurable Transition Systems:

Semantics, Logics and Applications

(ReacTS 2025)

Preliminary proceedings

Toledo, Spain

November 11, 2025

(Please do not distribute)

Preface

This volume contains the papers presented at the 2nd International Workshop
on Reconfigurable Transition Systems: Semantics, Logics and Applications, held
in Toledo, Spain, on November 11, 2025.

This workshop aims to bring together the whole community of researchers
working on different ways to model reconfigurable and reactive systems from
a formal perspective. This includes theoretical approaches (like hybrid logics,
reactive frames, model-update logics, and topological and algebraic semantics),
or formalisms designed for specific purposes (like separation logic in software
verification, dynamic epistemic logic in AI planning, and others). Also, our goal
is to devise novel approaches and potential applications, and share a common
perspective on the discipline.

We received 8 submissions from authors in 7 countries, out of which the
Program Committee selected 4 to be accepted as regular papers and 4 to be
accepted as short papers. All submitted papers were reviewed, on average, by
three referees in a single blind manner. The conference pre-proceedings were
made available at the conference. The proceedings includes all the final versions
of the papers that took into account the comments received by the reviewers.
All authors will be invited to submit their publications for the post-proceedings,
to be published in a dedicated LNCS proceedings combining more workshops
associated to the SEFM 2025 conference. Authors of selected accepted papers
will be invited to submit extended versions of their contributions to appear in a
special issue.

We would like to thank all researchers who submitted their work to the
conference, to all colleagues who served on the Program Committee, and to
the external reviewers, who helped us to prepare a high-quality conference pro-
gram. Particular thanks to the invited speakers, Alessandra Palmigiano, from
Vrije Universiteit Amsterdam in the Netherlands, and Amanda Vidal, from the
Czech Academy of Sciences in Czech Republic, for their efforts and dedication
to present their research and to share their perspectives on reconfigurable tran-
sitions systems at ReacTS. We are extremely grateful for the help in managing
practical arrangements from the local organizers at the University of Castilla-La
Mancha. We also thank Springer for their sponsorship.

November 2025
Toledo, Spain

Umberto Rivieccio
José Proença

2

Organization

Program Chairs

Umberto Rivieccio Universidad Nacional de Educación a Distancia, Spain
José Proença CISTER & University of Porto, Portugal

Program Committee

Lúıs Soares Barbosa Universidade Do Minho, Portugal
Benjamin Bedregal Universidade Federal do Rio Grande do Norte,

Brazil
Mario Benevides Universidade Federal Fluminense, Brazil
Patrick Blackburn University of Roskilde, Denmark
Valentin Cassano Universidad Nacional de Ŕıo Cuarto and CON-

ICET, Argentina
Madalena Chaves Centre Inria d’Université Côte d’Azur, France
Gabriel Ciobanu Institute of Computer Science, Romanian

Academy, Romania
Raul Fervari Universidad Nacional de Córdoba and CON-

ICET, Argentina
Daniel Figueiredo University of Aveiro, Portugal
Sabine Frittella Université d’Orleans, France
Sujata Gosh Indian Statistical Institute, Chennai, India
Andreas Herzig CNRS, Université Paul Sabatier, France
Juha Kontinen University of Helsinki, Finland
Alexandre Madeira University of Aveiro, Portugal
Sérgio Marcelino IT & Dep. Mathematics IST, University of Lis-

bon, Portugal
Vanina Mart́ınez IIIA-CSIC, Barcelona, Spain
Manuel Martins University of Aveiro, Portugal
Carles Noguera i Clofent Università degli Studi di Siena, Italy

Aybüke Özgün University of Amsterdam, The Netherlands
Alessandra Palmigiano Vrije Universiteit Amsterdam, The Nether-

lands
Regivan Santiago Universidade Federal do Rio Grande do Norte,

Brazil
François Schwarzentruber ENS Rennes, France
Sonja Smets ILLC, University of Amsterdam, The Nether-

lands

Ionut, T, ut,u Simion Stoilow Institute of Mathematics of the
Romanian Academy, Romania

Fernando R. Velázquez-Quesada University of Bergen, Norway
Fan Yang Utrecht University, The Netherlands

Additional Reviewers

Vincent Hugot, INSA CVL, France
Maria João Frade, University of Minho, Portugal

4

Table of Contents

Regular Publications

Comparing finite many-valued logics via WSkS . 6
Sérgio Marcelino

goLoop: SMT-Based Loop Analysis via Global Optimization 21
Markus Krahl, Matthias Güdemann, and Stefan Wallentowitz

Probabilistic Relation-Changing Operators . 35
Daniel Figueiredo, Manuel Martins, and Raul Fervari

Reconfigurable stochastic multi-formalism models: an approach based
on Maude . 47

Lorenzo Capra and Marco Gribaudo

Short Publications

A HASKELL encoding for reconfigurable timed systems 63
Castro Iglesias Antonio , Alexandre Madeira, and Manuel Martins

Reasoning about blurred observations of program states: A recipe 69
Manisha Jain, Alexandre Madeira, and Lúıs Barbosa

Four-valued logics of indicative conditionals . 76
Miguel Muñoz Pérez

Dynamic Fuzzy Language for Label Fuzzy Reactive Graphs 83
Suene Duarte, Daniel Figueiredo, Manuel Martins, and Regivan San-
tiago

Comparing finite many-valued logics via WSkS

Sérgio Marcelino1[0000−0002−6941−7555]

SQIG - Instituto de Telecomunicações
Departamento de Matemática - Instituto Superior Técnico, Lisboa, Portugal

smarcel@math.tecnico.ulisboa.pt

Abstract. Partial non-deterministic logical matrices (PNmatrices),
which interpret logical connectives as multi-functions, significantly en-
hance the expressive power of logical matrix semantics. This expressivity
enables finite characterizations of broader classes of logics and facilitates
solutions to compositionality problems. However, it also introduces chal-
lenges: notably, determining whether two finite PNmatrices characterize
the same sets of theorems (Fmla-logics), or the same Tarskian conse-
quence relations (Set × Fmla-logics), is undecidable, even when restricted
to languages with a finite number of variables.
We reduce the problem of comparing finite-variable fragments of

multiple-conclusion consequence relations (Set × Set-logics) of finite PN-
matrices to the validity problem of Weak Second-order Logic of k Succes-
sors (WSkS), which is known to be decidable. Consequently, we provide
an effective method for comparing the Set × Set-logics of two finite PN-
matrices, provided these are axiomatizable using a known finite number
of variables.

Keywords: Many-valued logics · Partial non-deterministic matrices ·
Comparison of logics · Decidability · WSkS.

1 Introduction

The advantages of moving beyond truth-functional semantics for propositional
logics have been increasingly noted in the literature. Non-deterministic interpre-
tations of connectives – thus allowing the interpretation of connectives not to
be completely determined by the input – was already considered in the 1980s to
overcome the limitations of standard logical matrix semantics in finitely charac-
terizing modal logics [20,19]. These ideas have garnered increasing attention over
the past 20 years. The systematic study of partial non-deterministic matrices
(PNmatrices) was initiated in [3,5], where their potential was first illustrated
by producing finite many-valued semantics for a wide range of paraconsistent
logics [2]. Subsequent work has revealed their broader expressive power: PNma-
trix semantics can be automatically generated for certain families of sequent
calculi [21,5], effectively updated to reflect axiomatic strengthenings with axioms
of specific shapes [4,12,8], and composed in a modular fashion to yield semantics
for combined logics [24,9]. This generalized semantical setting allows for the
systematic study of the existence of axiomatizations, for a given logic, using rules

2 Sérgio Marcelino

that avoid mixing certain connectives [10], or for greater control when extending
a base logic with connectives satisfying certain desired properties [1,17].

As originally proposed in [20], PNmatrices can be used as finite-valued starting
points for more involved semantics based on level-valuations, which recursively
sieve out undesired valuations over a given finite PNmatrix. This idea has
been increasingly used to give alternative semantics to modal logics that avoid
possible worlds [13,27,28] and that still provide effective decision procedures for
the characterized logics [22,16], leading to the notion of restricted Nmatrices
(RNmatrices) [14].

In this paper, we tackle the problem of comparing the logics characterized
by PNmatrices. The question about the computational status of this problem
was first raised in [35] and has become increasingly relevant due to the growing
number of finite PNmatrices in the literature, along with the rapid development of
techniques for generating new ones. Notably, the ability to compare the logics of
two PNmatrices is crucial for logical modeling tasks, such as identifying minimal
semantics for a target logic. Moreover, it relates to the problem of obtaining
‘local’ characterizations of sound morphisms or quotients of Nmatrices, analogous
to congruences in logical matrices [11].

What was not completely clear from the start is that the decidability of
the problem may depend on the notion of logic one is working with. In [6] it
is shown that if we take logic as a (single-conclusion) Tarskian consequence
relation (Set× Fmla-logic), this problem is undecidable. The present article
demonstrates that when considering (multiple-conclusion) Scottian consequence
relations (Set× Set-logics), at least under finite variable restrictions, the problem
becomes decidable. While the unrestricted problem remains open, the restricted
version is enough to be usable when we know the considered logics are axiomati-
zable using a finite known number of variables.

These results align with known fundamental differences between the Set× Set
and Set× Fmla settings. While the Set× Set-logic of any finite matrix is finitely
axiomatizable [31], this property fails for Set× Fmla-logics [34]. Moreover, the
Set× Set setting exhibits several distinctive features: it admits analytical axiom-
atizations [25,7], preserves finiteness under the operation of joining logics (unlike
in Set× Fmla) [9]; see [23] for an illustration of these differences in a concrete
case of a connective that can only be fully captured in Set× Set-context.

2 Preliminaries

This section provides an overview of the fundamental concepts related to PNma-
trices and their associated logics. Due to space constraints, the discussion is not
exhaustive; for a more comprehensive presentation, please refer to [9].

Propositional logics A propositional signature is an indexed family Σ =
{Σ(k) : k ∈ N} where Σ(k) is the set of k-ary connectives. We will be considering
only finite signatures in which

⋃
Σ is finite, and we denote by maxArity(Σ) the

maximum k such that Σ(k) 6= ∅.

Comparing finite many-valued logics via WSkS 3

We consider a set of propositional variables P = {pi : i ∈ N}, and given a
set Q ⊆ P , we denote by LΣ(Q) the set of formulas written with connectives in
Σ using variables in Q. The propositional language associated to Σ is LΣ(P),
and its restriction to n variables is LΣ(P |n) with P |n = {p1, . . . , pn}. When Σ is
fixed by the context, we simply write Fm := LΣ(P) and Fmn := LΣ(P |n).

There are various notions of logic considered in the literature (see [30,31,18,9]):

– a Fmla-logic is just a set Thm ⊆ Fm of formulas closed for substitutions. This
corresponds to the traditional notion of a logic defined by its set of valid
formulas or theorems. In classical and intuitionistic settings, this notion is
often sufficient, since the presence of an implication connective satisfying the
Deduction Theorem allows the entire consequence relation to be recovered
from its theorems.

– a Set× Fmla-logic is a relation ` ⊆ ℘(Fm)× Fm satisfying reflexivity, mono-
tonicity, transitivity, and substitution invariance. This captures the standard
notion of logic as (single-conclusion) Tarskian consequence relation: a formula
ϕ follows from a set of premises Γ (written Γ ` ϕ) whenever every formula
in Γ is true, ϕ must be true.

– a Set× Set-logic is a relation B ⊆ ℘(Fm)× ℘(Fm) satisfying
Γ B ∆ if Γ ∩∆ 6= ∅ (overlap)
Γ ∪ Γ ′ B ∆ ∪∆′ if Γ B ∆ (dilution)
Γ B ∆ if Γ ∪Ω B Ω ∪∆ for every partition 〈Ω,Ω〉 of L (cut for sets)
Γσ B ∆σ for any σ : P → Fm if Γ B ∆ (substitution invariance).1

This is the multiple-conclusion notion of consequence, in which both premises
and conclusions are sets of formulas. Unlike the single-conclusion case, it is
a symmetric notion: it can be read left-to-right as truth-preserving (if all
formulas in Γ are true, then some formula in ∆ is true), and right-to-left as
falsity-preserving (if all formulas in ∆ are false, then some formula in Γ is
false).

We have adopted the notation (Fmla-, Set× Fmla-, and Set× Set-logics) in-
troduced by Humberstone in [18]. The notion of Set× Set-logic extends the ones
of Set× Fmla-logic and Fmla-logic, in the sense that `B := {〈Γ, ϕ〉 : Γ B {ϕ}} is
a Set× Fmla-logic, and ThmB := {ϕ : ∅ B {ϕ}} is a Fmla-logic.

We say that B is compact whenever Γ B ∆ implies Γ ′ B ∆′ for some finite
Γ ′ ⊆ Γ and ∆′ ⊆ ∆.

The n-variable fragment of each notion of logic is denoted by

Thm|n := Thm ∩ Fmn `|n := ` ∩ ℘(Fmn)× Fmn B|n := B ∩ ℘(Fmn)× ℘(Fmn)

PNmatrix semantics A Σ-partial non-deterministic matrix (Σ-PNmatrix) is
a tuple M = 〈A, ·M, D〉, where A is a set of truth-values, ·M interprets each i-ary
connective f ∈ Σ as a multi-function fM : Ai → ℘(A), and D ⊆ A is the set of
designated truth-values. We say that M = 〈A, ·M, D〉 is finite whenever Σ and

1 Γσ is obtained from Γ by replacing each variable with its image under σ.

4 Sérgio Marcelino

A are finite, and set size(M) = |A|. We will often drop the Σ- prefix when Σ is
fixed by the context.

We say M is a non-deterministic matrix (Nmatrix) whenever fM(a) 6= ∅ for
every f ∈ Σ(i) and a ∈ Ai, and that M is a matrix whenever fM(a) is a singleton
for every f ∈ Σ(i) and a ∈ Ai.

A valuation over a PNmatrix M is a function v : Fm → A that satisfies the
condition: v(f(ϕ1, . . . , ϕn)) ∈ fM(v(ϕ1), . . . , v(ϕn)), for every connective f ∈ Σ
and formulas ϕ1, . . . , ϕn ∈ Fm. The set of all valuations over M is denoted by
Val(M).

The Set× Set-logic BM characterized by M is given by

Γ BM ∆ whenever for every v ∈ Val(M), if v(Γ) ⊆ D then v(∆) ∩D 6= ∅.

The Fmla-logic characterized by M is Thm(M) := ThmBM , and the Set× Fmla-
logic characterized by M is `M:=`BM .

Given PNmatrix M = 〈A, ·M, D〉 and X ⊆ A, we denote by MX the restriction
ofM toX. We let TM := {X ⊆ A : MX is Nmatrix} be the set of total components
of M, and T ∗M :=

⋃
X∈TM

℘(X).

Fixed Υ closed for subformulas (Υ = sub(Υ)) we let the set ValΥ (M) :=
{v|Υ : v ∈ Val(M)} where v|Υ denotes the restriction of v to Υ . We have that
v ∈ ValΥ (M) iff both conditions in lines (1) and (2) hold

v(f(ϕ1, . . . , ϕi)) ∈ fM(v(ϕ1), . . . ,v(ϕi)) for every f(ϕ1, . . . , ϕi) ∈ Υ, (1)
v(Υ) ∈ T ∗M. (2)

Partial bivaluations Each partial valuation v ∈ ValΥ (M) induces a partial
bivaluation bv : Fm → {0, 1} as:

bv(ϕ) =
{

1 if v(ϕ) ∈ D,
0 otherwise.

The set of all Υ -partial bivaluations on M is BivalΥ (M) = {bv : v ∈ ValΥ (M)}.

Lemma 1. For any finite PNmatrices M1 and M2, B|nM1
⊆B|nM2

iff
BivalΥ (M2) ⊆ BivalΥ (M1) for all finite Υ = sub(Υ) ⊆ Fmn.

Proof. Since M1 and M2 are finite, B1 and B2 are compact. Thus, B|n1 ⊆B
|n
2 iff

Γ B1 ∆ implies Γ B2 ∆ for any finite Γ,∆ ⊆ Fmn.
Let Υ = sub(Γ ∪ ∆) and i ∈ {1, 2}. We have that Γ Bi ∆ iff there is no

vi ∈ Val(Mi)Υ such that vi(Γ) ⊆ D and vi(∆) ∩D = ∅. Equivalently, Γ Bi ∆
iff there is no bi ∈ Bival(Mi)Υ such that bi(Γ) = 1 and bi(∆) = 0.

Further, note that for b : Υ → {0, 1}, if b ∈ BivalΥ (M2) \BivalΥ (M1) we have
that b−1(1) 6BM2 b

−1(0) and b−1(1) BM1 b
−1(0), and thus B|n1 6⊆B

|n
2 .

Hence, B|n1 ⊆B
|n
2 iff BivalΥ (M2) ⊆ BivalΥ (M1) for every finite Υ = sub(Υ) ⊆

Fmn. ut

Comparing finite many-valued logics via WSkS 5

3 Computational problems

Given a classM of finite PNmatrices, we are interested in the following compu-
tational problems where n ∈ N ∪ {ω}:

Thm|n⊆ (M): given a finite signature Σ and finite Σ-PNmatrices M1,M2 ∈M
determine whether Thm(M1)|n⊆Thm(M2)|n.
Sing|n⊆ (M): given a finite signature Σ and finite Σ-PNmatrices M1,M2 ∈M
determine whether `|nM1

⊆ `|nM2
.

Mult|n⊆ (M): given a finite signature Σ and finite Σ-PNmatrices M1,M2 ∈M
determine whether B|nM1

⊆ B|nM2
.

Consider the following classes of PNmatrices: PNmatr is the class of all finite
PNmatrices, Nmatr is the class of all finite Nmatrices, Matr is the class of all
finite matrices. Clearly, Matr (Nmatr (PNmatr.

A problem is decidable if there exists an algorithm that, for each suitable
input, provides a yes/no answer depending on whether the condition holds. If a
problem is decidable with respect to a classM, it is also decidable with respect
to any subclassM′ ⊆M. As usual, the dual of a computational problem is the
computational problem obtained by negating the envisaged condition. Given a
computational problem P we will denote its dual by P. Recall from computability
theory (e.g., [32]) that a problem P is decidable if and only if P is decidable.
Additionally, the notion of computable reduction (or many-one reduction), denoted
by ≤, ensures that if P ≤ Q and Q is decidable, then P is also decidable.

In [26,6] the following problems were considered

∃Thm(M): given a finite signature Σ and a finite Σ-Nmatrix M ∈ M
determine whether Thm(M) 6= ∅;
Eqv(M): given a finite signature Σ and finite Σ-Nmatrices M1,M2 ∈ M
determine whether `M1 = `M2 .

Since the set of expressible functions of a given arity is computable in a
finite algebra, the problems ∃Thm(Matr) and Eqv(Matr) are decidable (see [26,6]).
Similarly, the problems Thm|n⊆ (Matr) and Sing|n⊆ (Matr) are decidable, for ev-
ery n ∈ N ∪ ω. In the presence of non-determinism the situation is radically
different as ∃Thm(Nmatr) and Eqv(Nmatr) are undecidable (see [26,6]). The fol-
lowing proposition shows that undecidability propagates to Thm|ω⊆ (PNmatr) and
Sing|ω⊆ (PNmatr), as to their finite variable variants.

Proposition 1. For every 0 < n ∈ N ∪ {ω}:

(i) The problem Thm|n⊆ (PNmatr) is undecidable.
(ii) The problem Sing|n⊆ (PNmatr) is undecidable.

6 Sérgio Marcelino

Proof. Items (i) and (ii) are straightforward variations of the results in [6], and
we provide only the most important details of the proof.

Given finite Σ-Nmatrix, consider Mun = 〈{0, 1}, ·un, {1}〉 the 2-valued Σ-
Nmatrix, where the connective interpretation is completely unconstrained, i.e,
fM(a) = {0, 1} for every f ∈ Σ(i) and a ∈ {0, 1}i. Clearly, Thm(M) = Thm|n(M) =
∅ for every n ∈ N∪{ω}. As for every n > 0 we have Thm(M) 6= ∅ iff Thm|n(M) 6= ∅,
we obtain that Thm(M) 6= ∅ if and only if Thm|n(M) 6⊆ Thm|n(Mun) for each
n > 0. Since Mun is finite we have that ∃Thm(Nmatr) ≤ Thm|n⊆ (PNmatr). As
∃Thm(Nmatr) is undecidable, so is Thm|n⊆ (PNmatr) and (i) holds.

For (ii), consider the tildeing-operation on Nmatrices introduced in [6, Def-
inition 14]. We have that M̃ is finite whenever M is. It was shown in [6] that
Γ `M̃ ϕ iff ϕ ∈ Γ or ϕ ∈ ThmM. This implies that Thm(M) 6= ∅ iff `|n

M̃
6⊆`|nMun

.

Hence, ∃Thm(Nmatr) ≤ Sing|n⊆ (Nmatr). So, Sing|n⊆ (PNmatr) is undecidable since
∃Thm(Nmatr) is, and (ii) holds. ut
The following theorem is the main result of the paper, that deepens the contrast
on the computational status of the considered problem for finite PNmatrices
depending on the notion of logic considered. We use WSkS (Weak Second-order
Logic of k Successors) as a tool to establish the decidability of Mult|n⊆ (PNmatr)
for n ∈ N. We present here only the essential definitions needed for this work, for
more details see [29,33,15].

For k ∈ N let Tk = {1, . . . , k}∗ be the finite sequences of elements of {1, . . . , k}.
We identify Tk with the infinite full k-ary tree.

Given a set of first-order variables vars, the set of WSkS-terms is

Terms = Tk ∪ {xτ : x ∈ vars, τ ∈ Tk},
where successors are denoted using postfix notation, Suci(τ) = τi is the i successor
of τ for τ ∈ Tk and 1 ≤ i ≤ k. The set WSkS formulas FmWSkS is built from atomic
formulas of the form Q(t) for unary predicate Q ∈ Preds and term t ∈ Terms, and
complex formulas are built from atomic formulas by the application of classical
propositional connectives →, ∧, ∨, ¬, and first-order quantification over vars and
second-order quantification on the unary predicates in Preds. The semantics of
WSkS are given by interpretations I mapping first-order variables x ∈ vars to
xI ∈ Tk, and predicates Q ∈ Preds to finite sets QI ⊆ Tk. The interpretation I is
extended to arbitrary terms by τI = τ and (xτ)I = xIτ , and we write

I |= Q(t) if tI ∈ QI for Q ∈ Preds

I |= Φ→ Ψ if I 6|= Φ or I |= Ψ (likewise for ∧,∨,¬)

I |= ∀x. Φ if I[x 7→ τ] |= Φ for every τ ∈ Tk

I |= ∀Q. Φ if I[Q 7→ Q] |= Φ for every finite Q ⊆ Tk.

We say that a WSkS formula Φ is valid whenever I |= Φ for every interpretation
I. Let ValidWSkS be the validity problem for WSkS : ValidWSkS(Φ) outputs yes if Φ

Comparing finite many-valued logics via WSkS 7

is valid, and no otherwise. The decidability of ValidWSkS is a fundamental result
in theoretical computer science, originating from Rabin’s seminal work [29] and
extensively studied since then [33,15].

Theorem 1. For every n ∈ N, the problem Mult|n⊆ (PNmatr) is decidable.

Proof. The proof relies on establishing a reduction Mult|n⊆ (PNmatr) ≤ ValidWSkS,
which results from Proposition 2. The proof of the reduction will be the focus of
the next section. ut

The next section is dedicated to constructing ΦnM1M2
, a WSkS formula that

is valid iff B|nM1
⊆B|nM2

. Our construction builds upon Lemma 1, encoding the
set of partial bivaluations for each finite PNmatrix using WSkS formulas. This
approach is specific to the Set× Set-context, as the analogues of Lemma 1 do
not hold for Fmla and Set× Fmla-logics.

Before proceeding, recall that BR denotes the smallest Set× Set-logic contain-
ing R ⊆ ℘(Fm)× ℘(Fm), and that R axiomatizes (or serves as a basis for) BR.
We say that BR is axiomatized in n variables whenever R ⊆ ℘(Fmn)× ℘(Fmn).
This restriction to finitely many variables is sufficient when the logics under
consideration are axiomatizable with a number of variables that can be effectively
computed from the corresponding PNmatrix. In fact, since BR ⊆ B if and only
if R⊆ B, it follows that if B1 is axiomatizable in n variables then B1⊆B2 iff
B|n1 ⊆B

|n
2 . Consequently, if BM1 is axiomatizable in n variables, then deciding

whether BM1⊆BM2 reduces to checking the validity of ΦnM1M2
.

4 Reducing Mult|n⊆ (PNmatr) to validity in WSkS

For readability, we denote sequences of predicates as Q := Q1 . . .Q` using vector
notation. We write Φ(Q, x1, . . . , xj) when the free second-order variables of Φ
are listed in Q, and the first-order free variables in x1, . . . , xj . Additionally, we
use ∀Q.(Φ) instead of ∀Q1 . . . ∀Qk.(Φ).

Let

Union(Q, x) :=
∨

1≤i≤`
Qi(x),

AtMostOne(Q) := ∀x.
(∧

1≤i<j≤`
¬(Qi(x) ∧ Qj(x))

)
.

It is immediate that I |= Union(Q, x) iff xI ∈
⋃

1≤i≤`
(Qi)I.

Furthermore, I |= AtMostOne(Q) iff for every τ ∈ Tk, τ belongs to at most
one (Qi)I for 1 ≤ i ≤ `.

Given Φ(x) with free variable x, we define:

ClosedForPrefix(Φ) := ∀x.
(
(
∨

1≤i≤k
Φ(xi))→ Φ(x)

)
.

8 Sérgio Marcelino

We have that I |= ClosedForPrefix(Φ) iff ΦI := {x : I |= Φ} is closed for prefixes.
Let Labels(Q) := AtMostOne(Q) ∧ ClosedForPrefix(Union(Q, x)).

When I |= Labels(Q), the interpretation I partitions TI := {τ ∈ Tk : I |=
Union(Q, τ)} into ` disjoint subsets, each labelled by some Qi that occurs in Q.
Furthermore, TI is a finite subtree of Tk rooted at ε. This subtree is referred to
as a finite prefix subtree of Tk.

Encoding sets of formulas in Fmn We consider fixed n ∈ N and finite
signature Σ, let k := max(2,maxArity(Σ)), and consider the following predicates
dedicated to sets of formulas: a predicate A (labelling append nodes); predicates
Cf for f ∈ Σ, and Pi for pi ∈ P |n (labelling formula nodes).

Letting
⋃
Σ = {f1, . . . , fm} and Σ(i) = {fi,1, . . . , fi,mi

} we consider

C := Cf1 . . .Cfm
C=i := Cfi,1 . . .Cfi,mi

P := P1 . . .Pn

and refer to larger lists of predicates by affixation, letting S := ACP list every
predicate dealing with sets formulas, F := CP list every predicate dealing with
formulas. We further let

IsRelevant(S, x) := Union(S, x) IsForm(S, x) := Union(F, x)
IsConnAri(S, x) := Union(C=i, x) IsVar(S, x) := Union(P, x)

IsSetOfForm(S) := Labels(S) ∧ TopLeft(S) ∧ BotRight(S)

TopLeft(S) := A(ε) ∧ ∀x.
(

A(x)→
(
(IsRelevant(S, x1)→ A(x1))∧ (3)

IsForm(S, x2)∧ (4)
∧

3≤i≤k
¬IsRelevant(S, xi)

))
(5)

BotRight(S) :=
∧

0≤i≤n

(
IsConnAri(S, x)→

(∧

1≤j≤i
IsForm(S, xj) ∧

∧

i<j≤k
¬IsRelevant(S, xj)

))
∧ (6)

(
IsVar(S, x)→

∧

1≤j≤k
¬IsRelevant(S, xj)

)
(7)

Assume that I |= IsSetOfForm(S). From I |= Labels(S) we have that I labels with
predicates in S exactly the finite tree TI = {τ ∈ Tk : IsRelevant(S, τ)} illustrated
in Fig. 1. From I |= TopLeft(S) we have that append nodes are in the top left
corner by line (3), and their 2-successors are always formula nodes by line (4).
Further, append nodes have maximum branching of 2 by line (5). Formula nodes
are below them on the right by line (4), as depicted in Fig. 2.

Comparing finite many-valued logics via WSkS 9

Fig. 1: The finite prefix subtree TI.

Append nodes

Formula nodes

Fig. 2: Append and formula nodes.
From I |= BotRight(S), using line (6) we have that formula nodes labelled by

predicates occurring in C=i are i-branching, corresponding to i-ary connectives
f ∈ Σ(i). By line (7) nodes labelled by predicates in P, corresponding to variable
pi for some 1 ≤ i ≤ n, have no successors in TI. Leaves of TI are labelled by
predicates listed in C=0P. This encoding captures the usual tree representation
of formulas as illustrated in Fig. 3.

0-ary connectives

non 0-ary

variables and

connectives

Fig. 3: Tree representation of ϕj = f2(f3(f0, p2, f0), p1) assuming fi ∈ Σ(i) for
i = 0, 1, 2, 3.

Still assuming I |= IsSetOfForm(S) we consider

ΥI = {ϕI
x : IsForm(S, x)} where ϕI

x =
{
f(ϕI

x1, . . . , ϕ
I
xi) if Cf (x),

pj if Pj(x).

We have that ΥI ⊆ Fmn is closed for subformulas, as leaf nodes are labelled
by 0-ary connectives and variables, each non-leaf formula node is labelled by
a connective with arity corresponding to its branching relative to TI, and its
immediate successors encode the maximal strict subformulas. Indeed, the S-
labelled subtree of TI below xI is the usual tree representation of ϕI

x.
We can express that two nodes x, y ∈ TI represent the same formula recursively
checking the equality between the labels of the matching nodes along the subtree

10 Sérgio Marcelino

of TI below each x and y:

SameForm(S, x, y) :=
IsForm(S, x) ∧ IsForm(S, y)∧ (8)
∧

f∈
⋃
Σ

(Cf (x)↔ Cf (y)) ∧
∧

1≤i≤n
(Pi(x)↔ Pi(y))∧ (9)

∧

1≤i≤k

(
(IsForm(S, xi) ∨ IsForm(S, yi))→ SameForm(S, xi, yi)

)
(10)

If I |= IsSetOfForm(S) ∧ SameForm(S, x, y), then both xI and yI must be formula
nodes by line (8), labelled by the same predicate listed in CP by line (9). In
the base case, xI and yI are leaves of TI and have the same label in C=0P. In
case both xI and yI are labelled with the same predicate C in C=i for i > 0,
their successors must satisfy the recursive condition in line (10), ensuring that
corresponding successors are either both non-formula nodes or represent the same
formula. This enforces that ϕI

x = ϕI
y.

Valuations Given a finite Σ-Nmatrix M = 〈A, ·M, D〉, we consider the predicates
Va for a ∈ A, write VM = V1, . . . ,V|A| and HasValue(VM, x) = Union(VM, x) and

IsPartialValuationM(S,VM) :=

∀x∀y
((

IsForm(S, x)→ HasValue(VM, x)
)
∧ (11)

AtMostOne(VM, x)∧ (12)
(
SameForm(S, x, y)→ SameValueM(VM, x, y)

)
∧ (13)

RespectsM(VM, x)∧ (14)

TotalM(S,VM)
)

(15)

where

SameValueM(VM, x, y) :=
∧

a∈A
(Va(x)↔ Va(y)) (16)

RespectsM(S,VM, x) :=
∧

f∈
⋃
Σ

Respectsf (S,VM, x) (17)

Respectsf (S,VM, x) :=∀x
(
(Cf (x) ∧

∧

1≤j≤i
Vaj

(xj))→
∨

a∈ c©M(a)

Va(x)
)

(18)

for a = a1, . . . , ai and f ∈ Σ(i)

TotalM(S,VM) :=
∨

X∈TM
∀x(

∨

a∈X
Va(x)) (19)

Lemma 2. Assume I |= IsSetOfForm(S). The following are equivalent:

Comparing finite many-valued logics via WSkS 11

1. I |= IsPartialValuationM(S,VM).
2. The mapping vI : ΥI → A defined by

v(ϕS
x) := a whenever xI ∈ (Va)I

is well-defined and satisfies vI ∈ ValΥI(M).

Proof. For 1. implies 2., assume I |= IsSetOfForm(S)∧ IsPartialValuationM(S,VM).
By line (11), every formula node is assigned a value. Well-definedness follows
from line (12), ensuring each node has at most one truth-value, and from lines (13)
and (16), guaranteeing that nodes corresponding to the same formula receive
the same value. Furthermore, by lines (14), (17) and (18), vI respects the
interpretation of connectives in M, meeting the requirement in line (1). Finally,
by lines (15) and (19), we conclude that vI(ΥI) ∈ T ∗M, ensuring vI ∈ ValΥI(M).
For 2. implies 1., suppose I 6|= IsPartialValuationM(S,VM). Then, at least one of
the formulas in line (11)–(15) must fail in I. If (11) does not hold, then some
formula node lacks an assigned value, contradicting the well-definedness of vI.
If (12) or (13) fail, then vI assigns multiple values to the same formula and also
contradicting that vI is well-defined. If (14) fails, then vI does not respect the
interpretation connectives in M, and if (15) fails then the values of the formulas
in ΥI are not contained in a total component of M, meaning in any case that
vI /∈ ValΥI(M). Hence, 2. cannot hold, completing the proof. ut

Bivaluations We consider a new predicate B associated with partial bivaluations
and define the following formulas

BivalM(S,B) :=∃VM.(IsPartialValuationM(S,VM) ∧ FitM(S,VM,B)) (20)
FitM(S,VM,B) :=∀x.(IsForm(S, x)→

∧

a∈D
(Va(x)→ B(x)) ∧

∧

a/∈D
(Va(x)→ ¬B(x))) (21)

Lemma 3. Assume that I |= IsSetOfForm(S). The following are equivalent:

1. I |= BivalM(S,B).
2. bI ∈ BivalΥI(M) for bI : ΥI → {0, 1} defined by bI(ϕS

x) := 1 iff BI(x).

Proof. From I |= IsSetOfForm(S) if follows that ΥI is a finite set of formulas closed
for subformulas. Further, for every I′ coinciding with I on S we have ΥI = ΥI′ .
For 1. implies 2., assume that I |= BivalM(S,B). By line (20), there exists an
interpretation I′, differing from I only on predicates in VM, such that

I′ |= IsPartialValuationM(S,VM) ∧ FitM(S,VM,B).

By Lemma 2, we conclude that vI′ ∈ Val(M)ΥI . Furthermore, by line (21), we
have bI(ϕ) = 1 iff vI′(ϕ) ∈ D, for every ϕ ∈ ΥI, and so vI = bvI . This establishes
that bI ∈ BivalΥI(M).

12 Sérgio Marcelino

For 2. implies 1., suppose b ∈ BivalΥI(M). Then, by definition of BivalΥI(M),
there exists a valuation v ∈ Val(M)|ΥI , such that b = bv. Consider I′(Va) =
{τ ∈ TI : vI(ϕI

x) = a}, and I′(Q) = I(Q) for Q not in VM. By Lemma 2, we
have that I′ |= IsPartialValuationM(S,VM). Further, using that b = bv, we have
that bI(ϕ) = 1 iff vI′(ϕ) ∈ D meaning that I′ |= FitM(S,VM,B). Therefore, by
line (20), we conclude that I |= BivalM(S,B). ut

Comparing logics via WSkS

Proposition 2. Given finite Σ-PNmatrices M1 and M2 let

ΦnM1M2 := ∀SB.((IsSetOfForm(S) ∧ BivalM2(S,B))→ BivalM1(S,B)).

Then, B|nM1
⊆B|nM2

iff the formula ΦnM1M2
is valid.

Proof. Since M1 and M2 are Σ-PNmatrices, we have that
For the left to right direction, assume that the formula ΦnM1M2

is not valid,
meaning that there is interpretation I such that

I |=IsSetOfForm(S) ∧ BivalM2(S,B) (22)
I 6|=BivalM1(S,B) (23)

Using (22) and Lemma 3 we have that bI ∈ BivalΥI(M2). From (23) it follows that
I 6|= ∃VM1 .(IsPartialValuationM1(S,VM1)∧FitM1(S,VM1 ,B)). Thus, by Lemma 3 we
have that bI /∈ BivalΥI(M1). Hence, BivalΥI(M2) 6⊆ BivalΥI(M2) and by Lemma 1
we conclude that B|nM1

6⊆B|nM2
.

For the other direction, assume that ΦnM1M2
is valid and let b ∈ BivalΥ (M2)

for some finite Υ = {ϕ1, . . . , ϕm} with m ∈ N. We consider the interpretation
I such that AI = {1j : 0 ≤ j ≤ m − 1} (see Figs. 1 and 2), and set the
interpretations of C occurring in C and Pi in P, as necessary to append the tree
representation of ϕj placing its root in the node 1j−12 (see Figs. 2 and 3). Clearly,
I |= IsSetOfForm(S) ∧ BivalM2(S,B), Υ = ΥI and b = bI. Since ΦnM1M2

is valid we
have that I |= BivalM1(S,B). Hence, by Lemma 3 we obtain that b ∈ BivalΥ (M1),
and so BivalΥ (M2) ⊆ BivalΥ (M1).
Since this works for arbitrary finite Υ , we conclude that B|nM1

⊆B|nM2
by Lemma 1.

5 Conclusion

We have shown that comparing the Set× Set-logics characterized by finite PNma-
trices is decidable when the language is restricted to a finite number of variables.
However, the decidability of Mult|ω⊆ , which drops the finite variables restriction,
remains an open problem.

These results generalize what was known for monadic PNmatrices. In [7] it is
shown that the Set× Set-logics of finite monadic PNmatrices can be effectively
finitely axiomatized, and only using maxArity(Σ)+1 variables. Hence, to compare

Comparing finite many-valued logics via WSkS 13

the logics of finite monadicM1 andM2 we just have to generate the axiomatization
of M1 and check whether every generated rule is sound in M2. The present results
show that we can alternatively rely on an algorithm deciding the validity of
ΦnM1M2

for n = maxArity(Σ) + 1.
In conclusion, to determine if BM1⊆BM2 we do not really need to know a specific
axiomatization of BM1 (which may not even be finitely Set× Set-axiomatizable)
but only require a finite bound on the necessary number of variables. This
naturally raises the question of whether every finite PNmatrix M is axiomatizable
using a finite number of variables that can be computed from M. In light of
Theorem 1, if Mult|ω⊆ turns out to be undecidable, then the answer to this question
must be negative.

Acknowledgments

This work is funded by national funds through FCT – Fundação para a Ciência e a
Tecnologia, I.P., and, when eligible, co-funded by EU funds under project/support
UID/50008/2025 – Instituto de Telecomunicações

References

1. Avron, A.: The normal and self-extensional extension of Dunn–Belnap logic. Logica
Universalis 14, 281–296 (2020)

2. Avron, A., Arieli, O., Zamansky, A.: Theory of Effective Propositional Paraconsistent
Logics, Studies in Logic, vol. 75. College Publications, London (2018)

3. Avron, A., Lev, I.: Non-deterministic multiple-valued structures. Journal of Logic
and Computation 15(3), 241–261 (2005)

4. Avron, A., Zohar, Y.: Rexpansions of non-deterministic matrices and their applica-
tions in non-classical logics. Review of Symbolic Logic 12(1), 173–200 (2019)

5. Baaz, M., Lahav, O., Zamansky, A.: Finite-valued semantics for canonical labelled
calculi. Journal of Automated Reasoning 51(4), 401–430 (2013)

6. Caleiro, C., Filipe, P., Marcelino, S.: Equivalence of finite non-deterministic logi-
cal matrices is undecidable. Studia Logica (2025), https://arxiv.org/abs/2412.
14057, in print

7. Caleiro, C., Marcelino, S.: Analytic calculi for monadic PNmatrices. In: Logic, Lan-
guage, Information, and Computation (WoLLIC 2019). Lecture Notes in Computer
Science, vol. 11541, pp. 84–98. Springer (2019)

8. Caleiro, C., Marcelino, S.: On axioms and rexpansions. In: Arieli, O., Zamansky,
A. (eds.) Arnon Avron on Semantics and Proof Theory of Non-Classical Logics,
Outstanding Contributions to Logic, vol. 21. Springer (2021)

9. Caleiro, C., Marcelino, S.: Modular many-valued semantics for combined logics.
Journal of Symbolic Logic 89(2), 583–636 (2024)

10. Caleiro, C., Marcelino, S., Marcos, J.: Combining fragments of classical logic: When
are interaction principles needed? Soft Computing 23(7), 2213–2231 (2019)

11. Caleiro, C., Marcelino, S., Rivieccio, U.: Some more theorems on structural entail-
ment relations and non-deterministic semantics. In: Malinowski, J., Palczewski, R.
(eds.) Janusz Czelakowski on Logical Consequence, Outstanding Contributions to
Logic, vol. 27, pp. 345–375. Springer (2011)

14 Sérgio Marcelino

12. Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Taming paraconsistent (and
other) logics: An algorithmic approach. ACM Transactions on Computational Logic
16(1), 5:1–5:23 (2014)

13. Coniglio, M.E., del Cerro, L.F., Peron, N.M.: Finite non-deterministic semantics for
some modal systems. Journal of Applied Non-Classical Logics 25(1), 20–45 (2015)

14. Coniglio, M.E., Toledo, G.V.: Two decision procedures for da Costa’s Cn logics
based on restricted Nmatrix semantics. Studia Logica 110(3), 601–642 (2022)

15. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A
Guide to Current Research, Lecture Notes in Computer Science, vol. 2500. Springer
(2002)

16. Grätz, L.: Truth tables for modal logics T and S4, by using three-valued non-
deterministic level semantics. Journal of Logic and Computation 32(1), 129–157
(Jan 2022)

17. Greati, V., Marcelino, S., Marcos, J., Rivieccio, U.: Adding an Implication to Logics
of Perfect Paradefinite Algebras. Mathematical Structures in Computer Science
34(10), 1138–1183 (2024)

18. Humberstone, L.: The Connectives. MIT Press (2011)
19. Ivlev, J.: A semantics for modal calculi. Bulletin of the Section of Logic 17(3–4),

114–121 (1988)
20. Kearns, J.: Modal semantics without possible worlds. Journal of Symbolic Logic

46(1), 77–86 (1981)
21. Lahav, O., Avron, A.: A unified semantic framework for fully structural propositional

sequent systems. ACM Transactions on Computational Logic 14(4), 271–273 (2013)
22. Lahav, O., Zohar, Y.: Effective semantics for the modal logics K and KT via

non-deterministic matrices. In: Blanchette, J., Kovács, L., Pattinson, D. (eds.)
Automated Reasoning. pp. 468–485. Springer International Publishing, Cham
(2022)

23. Marcelino, S.: An unexpected Boolean connective. Logica Universalis 16, 85–103
(2022)

24. Marcelino, S., Caleiro, C.: Disjoint fibring of non-deterministic matrices. In: Kennedy,
J., de Queiroz, R. (eds.) Logic, Language, Information, and Computation (WoLLIC
2017). Lecture Notes in Computer Science, vol. 10388, pp. 242–255. Springer (2017)

25. Marcelino, S., Caleiro, C.: Axiomatizing non-deterministic many-valued generalized
consequence relations. Synthese 198(22), 5373–5390 (2021)

26. Marcelino, S., Caleiro, C., Filipe, P.: Computational properties of finite PNmatrices.
Journal of Logic and Computation 23(8), 1694–1719 (2022)

27. Omori, H., Skurt, D.: More modal semantics without possible worlds. IfCoLog
Journal of Logics and their Applications 3(5), 815–846 (2016)

28. Pawlowski, P., Skurt, D.: 8-valued non-deterministic semantics for modal logics.
Journal of Philosophical Logic 53, 351–371 (2024)

29. Rabin, M.O.: Decidability of Second-Order Theories and Automata on Infinite
Trees. Transactions of the American Mathematical Society 141, 1–35 (1969)

30. Scott, D.: Completeness and axiomatizability in many-valued logic. In: Proceedings
of the Tarski Symposium, Proceedings of Symposia in Pure Mathematics, vol. 25,
pp. 411–435. American Mathematical Society, Berkeley, CA (1974)

31. Shoesmith, D., Smiley, T.: Multiple-Conclusion Logic. Cambridge University Press,
Cambridge (1978)

32. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, 3 edn.
(2013)

Comparing finite many-valued logics via WSkS 15

33. Thomas, W.: Automata on Infinite Objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, Vol. B: Formal Models and Semantics, pp. 133–191.
Elsevier (1990)

34. Wroński, A.: A three element matrix whose consequence operation is not finitely
based. Bulletin of the Section of Logic 8(2), 68–70 (1979)

35. Zohar, Y.: Gentzen-type proof systems for non-classical logics. PhD Thesis, Tel
Aviv University, Tel Aviv, Israel (2018)

goLoop: SMT-Based Loop Analysis via Global
Optimization

Markus Krahl1,2[0009−0009−2435−1108], Matthias Güdemann1[0000−0002−1002−6023],
and Stefan Wallentowitz1[0000−0003−3182−4929]

1 Hochschule München University of Applied Sciences, Munich, Germany
{markus.krahl,matthias.guedemann,stefan.wallentowitz}@hm.edu

2 TASKING Germany GmbH, Munich, Germany
markus.krahl@tasking.com

Abstract. Reconfigurable transition systems (RTS) model dynamic be-
haviors where state transitions and system configurations evolve during
execution. Formal reasoning about such systems often requires analyzing
loops with a varying number of iterations. Although these loops termi-
nate, they lack a fixed bound and are therefore difficult to analyze using
bounded model checking (BMC) techniques, which rely on loop unrolling,
thereby facing scalability limitations.
We propose a global optimization (GO) based model checking approach
designed to efficiently handle these loop-constructs without explicit un-
rolling. Loops are treated as executable constructs and, together with
verification conditions, are encoded as optimization problems We for-
malize the approach with an extended SMT syntax supporting loop
constructs, define rules for translating quantifier-free SMT equations
involving floating point (FP) and bitvector theories into GO functions,
and demonstrate its effectiveness on loops performing FP computations.

1 Introduction

Modern software and cyber-physical systems are increasingly required to adapt
their behavior dynamically in response to internal conditions or external events.
This adaptability is often modeled using reconfigurable transition systems (RTS),
where the set of states, their properties, or the transition relations may change
during execution. Unlike traditional static transition systems, RTS capture struc-
tural modifications that occur as the system evolves. Such reconfigurations are
regularly preceded by complex computations that must finish before the system
can safely change its configuration. For instance, cyber-physical systems may
perform self-healing strategies before activating a different control strategy [12].
To ensure correctness of these systems, formal verification methods must be
able to analyze these pre-reconfiguration computations, which could involve long,
terminating but varying bounded loops.

Bounded Model Checking (BMC) is a widely used approach for verifying
safety properties of finite-state systems [3]. It systematically explores program
executions up to a fixed bound by unrolling loops and encoding the resulting

2 M. Krahl et al.

verification conditions (VC) into satisfiability (SAT) or Satisfiability Modulo
Theories (SMT) problems, enabling reasoning over richer domains such as floating
point (FP), integers, arrays, and bitvectors (BV). If a property is violated, BMC
produces a counterexample, illustrating a sequence of states that leads to the
violation. While BMC has proven highly effective for finding counterexamples
within bounded execution paths, it is incomplete due to the under-approximation
of the search space; the absence of a counterexample up to a certain bound does
not guarantee the correctness of the system for larger bounds. In systems that
undergo reconfiguration, loop intensive computations often precede behavior
leading to structural changes. Capturing such behavior with BMC requires large
unrolling depths, which exponentially increase the size of the verification formula
and make analysis infeasible due to its poor scalability with respect to increasing
bounds.

In this paper, we present a novel, alternative approach called goLoop that
formulates the verification task as a global optimization (GO) problem, with
the goal of analyzing loop constructs without the need for explicit unrolling
or induction-based reasoning, thereby addressing key limitations of existing
techniques. Instead of transforming loops into static unrolled structures potential
leading to exponential blow-up in the size of verification conditions, we propose
to execute them within a GO framework extending the key concepts presented
in XSat [7], goSAT [2], and further developed in parSAT [13]. This enables
running the optimization function in compiled form that would allow to use
native instructions of the platform resulting in faster solving speed; for instance
using FP instructions of the CPU instead of modelling their behavior with BVs if
the to be analyzed loop or program contains FP computations. Additionally, we
suggest additions to the SMT-LIB2 standard to enable a more imperative style
for syntactically supporting loop expressions. goLoop shall serve as building block
for future verification techniques that combine optimization-based reasoning with
BMC techniques.

The paper is structured as follows. Section 2 discusses related work. In
section 3 we contend that existing BMC techniques may exhibit limitations in
verifying algorithms involving long running loops, particularly performing FP
computations. The theoretical foundation and core principles of our GO approach
for evaluating loop-based programs and corresponding exemplary applications
are presented in section 4.

2 Related Work

Previous research has explored loop summarization and acceleration methods,
where the original loop construct is replaced by a model such as [15], [10],
or [6]. Additionally, [14] suggests adding auxiliary paths to loops for under-
approximation that could be used complementary with other verification methods.
Combining k-induction with loop invariant generation [1] has shown potential
to enable BMC to verify safety properties in programs involving loops without
manual annotations. [17] presents a BMC approach utilizing interpolation-based

goLoop: SMT-Based Loop Analysis via Global Optimization 3

summaries to analyze program behavior involving loops. In [20] path dependency
analysis is used to perform loop summarization which shows promising results in
verification of loop-based programs. Recent approaches, such as [19], explore loop
invariant generation by Large Language Models (LLM), bridging the gap between
automated reasoning and machine learning. While all of these approaches have
demonstrated promising results, their practical application and common usage
in industry has remained limited.

The idea of formulating FP constraints as GO problems was first introduced in
XSat [7]. It solves SMT equations in pure FP theory by transforming a quantifier-
free formula F (−→x), where −→x ∈ FPn, into an equisatisfiable objective function
G(−→x). G(−→x) is minimized using GO; a global minimum of zero indicates that
F (−→x), is satisfiable, while a non-zero minimum suggests unsatisfiability. XSat
takes SMT-LIB2 input and generates C code for the objective function, which
is compiled and executed as a Python module using the basinhopping from
SciPy [18]. goSAT [2] builds on XSat, applying the same transformation for SMT
equations in FP theory. It also supports code generation but introduces Just-in-
Time (JIT) compilation of the objective function for immediate evaluation. In
contrast to XSat, goSAT allows selection among multiple GO algorithms via the
NLopt library [11]. parSAT [13] is an integrated tool that performs a portfolio-
based semi-decision procedure for SMT equations in FP theory, extending the
concepts presented in XSat and goSAT. It employs multiple instances of GO
methods in a concurrent setting to solve a given SMT equation translated into a
GO problem.

Our work extends the approach presented in XSat and goSAT by focusing
on the representation and execution of varying bounded but terminating loops
directly within a GO framework. Besides, we present extensions to the SMT-LIB2
standard to improve its modelling capabilities for loop constructs within the
analyzed program. By doing so, we aim to provide a complementary approach to
current BMC techniques.

3 Motivation and Background

In this work we consider only safety properties (invariants). While this restricts
the expressiveness, in practical applications this is often enough to express the
desired properties. This problem can be expressed in terms of reachability and
allows for using satisfiability-based reasoning, allowing for much larger state-
spaces to be analyzed in comparison to techniques that require construction of
the entire state space, e.g., for BDD-based reasoning.

3.1 Bounded Model Checking

In BMC [3, 4], the analyzed program is modelled as a state transition system: A
state transition system is defined as M = (S, T, I) where S is the set of states,
I ⊆ S is the set of initial states, and T ⊆ S × S is the transition relation. Given
a transition system M , a property ϕ, and a bound k, BMC unrolls the system

4 M. Krahl et al.

k times and generates a VC ψ that is satisfiable if and only if there exists a
counterexample of ϕ for a bound lower than or equal to k . ψ is a quantifier-
free formula in a decidable subset of first-order logic, which is then checked for
satisfiability by an SMT solver. This results in a model checking problem denoted
by the following logical formula:

ψ = I(s0) ∧
k−1∧

i=0
T (si, si+1) ∧

k∨

i=0
¬ϕ(si)

This formula would be SAT if there exists a possible path π = (s0, s1..., sk) from
I to ¬ϕ in the program, such that the property ϕ does not hold. Each satisfiable
assignment would represent a valid counterexample. In case this equation is
UNSAT, the property ϕ holds for the analyzed program unrolled by k.

The following example – while involving relatively simple code – demonstrates
some difficulties that might occur when analyzing loop-based programs with
BMC. We use the C Bounded Model Checker (CBMC) [5] tool together with an
SMT solver as backend to illustrate the behavior of BMC. The C implementation
in Listing 1 calculates the harmonic series

∑n
k=1 = 1 + 1

2 + 1
3 + ...+ 1

n . It contains
an assertion that its result is always smaller than 4.0. However, the result of the
harmonic series diverges to ∞ as n tends to ∞. Therefore, the given assertion in
Listing 1 should not hold for values of x > 30.

Listing 1 C implementation of harmonic series with assertion

1 unsigned int x = nondet_uint();
2 float y = 0.0f;
3
4 while (x >= 1)
5 {
6 y += (1.0f / x);
7 x -= 1;
8 }
9

10 assert(y < 4.0f);

Using CBMC to verify this assertion would produce the SMT equation shown
in Listing 2, which encodes the harmonic series constraints in a syntax similar to
SMT-LIB2 (slightly simplified for readability – for more details on the encoding
see [9]). With rounding set to nearest even (RNE), the while-loop is unrolled
three times (bound k = 3). Each iteration introduces a new boolean guard
variable, modeling loop behavior up to the bound. When submitted to the solver,
the formula is UNSAT because the guards implicitly restrict x to a small range
[0, 2], where the asserted property holds. Solving required approximately 0.1
seconds on our system.

goLoop: SMT-Based Loop Analysis via Global Optimization 5

Listing 2 SMT formula for assertion of harmonic series

1 (declare-fun |guard#1| () Bool)
2 (declare-fun |guard#2| () Bool)
3 (declare-fun |guard#3| () Bool)
4 (define-fun B11 () Bool (and |guard#1| |guard#2| |guard#3|))
5 (assert (not B11)) ; for bounding the loop at least one guard must be false
6 (declare-fun |x1| () (_ BitVec 32)) ; input variable x1 as bitvector
7 (assert (= |guard#1| (>= |x1| 1))) ; first guard for first loop iteration
8 (define-fun |y1| () (_ FloatingPoint32) (+ 0.0 (/ 1.0 (to_fp_32 |x1|))))
9 (define-fun |x2| () (_ BitVec 32) (- |x1| 1))

10 (assert (= |guard#2| (>= |x2| 1))) ; second guard for second loop iteration
11 (define-fun |y2| () (_ FloatingPoint32) (+ |y1| (/ 1.0 (to_fp_32 |x2|))))
12 (define-fun |x3| () (_ BitVec 32) (- |x2| 1))
13 (assert (= |guard#3| (>= |x3| 1))) ; loop is finally bounded by third guard
14 (define-fun |y3| () (_ FloatingPoint32) (ite (and |guard#1| (not |guard#2|)) |y1| |y2|))
15 (define-fun |y4| () (_ FloatingPoint32) (ite |guard#1| |y3| 0.0))
16 (assert (not (< |y4| 4.0)))
17 (check-sat)

Increasing the input domain requires larger unrolling depths. For x ∈ [0, 20],
k must be 21 for which solving required 2.4 seconds and gave UNSAT. To detect
a counterexample for x ∈ [0, 31], k must be incremented to 32, leading to a 5.7
second runtime. In this case, the solver reported a counterexample for x = 31,
yielding y ≈ 4.027, which violates the assertion.

While BMC is effective for programs without loops or with easily determined
bounds, analyzing loop-intensive code is challenging. Large bounds may be needed
to expose violations occurring deep in the execution, resulting in significant
formula growth, longer solving times, or out-of-memory errors. Conversely, small
bounds risk missing property violations entirely. Choosing different bounds for
different loops quickly gets very challenging.

3.2 goLoop Approach

To tackle this problem we propose formulating the model checking problem as a
global constraint optimization problem and to extend existing bounding checking
techniques with the capability to analyze loops directly without unrolling.

The verifier seeks a satisfiable variable assignment of the VC’s formula by
minimizing an objective function to represent the violation of the VC. Loops are
not unrolled but included as sub-functions in the objective functions, such that
they are executed under constraints by the GO framework. Each loop encoded
as sub-function represents a part of the objective function. Accordingly, based on
the control flow graph (CFG) – including loops – of the analyzed program and
the property ϕ, the objective function F (x) is constructed for the VC ψ, where
the vector x denotes the program’s input. F (x) quantifies the distance dependent
on the program input x from violating the property ϕ. When F (z) = 0, i.e., the
optimization function has a global minimum of 0 for the program input z, then
z presents a counterexample that would lead to a violation of property ϕ. This
results in the following formula to express the VC ψ:

6 M. Krahl et al.

ψ := min
x∈R

F (x) = 0

where the set R represents the possible input domain for the program input x.
Accordingly, the harmonic series implementation shown in Listing 1 can

first be transformed into an SMT equation with syntactic support to include
loops (denoted by SMT-Loop), as illustrated in Listing 3. Further details on the
adaptations to the SMT-LIB2 syntax are provided in Section 4.

Listing 3 SMT-Loop program for assertion of harmonic series with inclusion of
loop

1 (declare-fun |x_in| () (_ BitVec 32)) ; input variable x_in as bitvector
2 (define-fun-mut |x| () (_ BitVec 32) |x_in|) ; convert to mutable
3 (define-fun-mut |y| () (_ FloatingPoint32) (0.0))
4 (define-fun-mut |loop_cond| () Bool (>= |x| 1))
5 (loop (|loop_cond|)
6 (define-fun-mut |y| () (_ FloatingPoint32) (+ |y| (/ 1.0 (fp_32 |x|))))
7 (define-fun-mut |x| () (_ BitVec 32) (- |x| 1))
8 (define-fun-mut |loop_cond| () Bool (>= |x| 1))
9)

10 (assert (not (< |y| 4.0)))
11 (check-sat)

Second, following our idea of goLoop, the SMT equation can be converted into
an objective function F (x) whose plot over the interval x ∈ [0, 39] is presented in
Figure 1. The transformation from an SMT equation with loop constructs into an
optimization function is described in detail in Section 4. As depicted in the plot,
the function reaches a value of zero for all x ≥ 31, with F (31) marked by a red
dot. That indicates that every x ∈ [31,∞) corresponds to a satisfying assignment
of the SMT equation from Listing 3 and, thus, represents a counterexample to
the assertion y < 4.0. GO algorithms can therefore be used to efficiently locate
such zero-valued global minima. For example, the basinhopping algorithm from
the SciPy Python package required less than 0.025 seconds on our system to find
a global minimum where F (x) = 0.

4 Theoretical Considerations

In the following, we present our considerations for integrating loop semantics
into SMT equations and to construct the corresponding objective functions.

4.1 Transforming an SMT Equation into a GO Problem

In general, a quantifier-free SMT equation F (−→x) with −→x ∈ Pn, where Pn repre-
sents the set of the program input domain, is transformed into a mathematical
objective function G(−→x). Computing G(−→x) with a given input vector −→a either

goLoop: SMT-Based Loop Analysis via Global Optimization 7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
0

100

101

102

103

104

105

106

107

108

109

F(x)

Fig. 1: Plot of F(x) for the SMT equation in Listing 3

returns 0 if −→a corresponds to a satisfiable assignment α for F (−→x) or a positive
distance value. To ensure equivalence between the optimization function G(−→x)
and the initial SMT formula F (−→x), the following requirements, which are derived
from those originally specified in XSat, must be satisfied: the objective function
must always return a non-negative value, and it must return zero if and only if
the corresponding valuation of the free variables is a satisfying assignment of
F (−→x).

The language LGO−SMT defines a simplified SMT syntax based on the SMT-
LIB2 standard. It generalizes a quantifier-free SMT formula F (−→x) involving FP
and BV theories. LGO−SMT extends the language supported by goSAT and XSat,
its syntax is defined as:

Bool π := ¬π | π1 ⊙ π2 | f1 ▷◁F P f2 | e1 ▷◁BV e2 | T | F | funBool((en)∗, (fn)∗, (πn)∗)
FP f := cf | vf | f1 ⊗F P f2 | funF P ((fn)∗, (en)∗, (πn)∗) | ite(π, f1, f2)
BV e := ce | ve | e1 ⊗BV e2 | funBV ((en)∗, (fn)∗, (πn)∗) | ite(π, e1, e2)

where ⊙ ∈ {∧,∨}, ▷◁F P∈ {<,≤, >,≥,==, ̸=} (for FP types), ▷◁BV ∈ {<{u|s}
,≤{u|s}, >{u|s},≥{u|s},==, ̸=} (the subscript {u|s} defines the respective operand
for signed and unsigned BV types), ⊗F P ∈ {+,−, ∗, /}, and ⊗BV ∈ {+, −, ∗,
/{u|s}, <<,>>{u|s}, rem{u|s}, &, |, ∼}. cf represents a FP constant, ce a BV
constant, vf is a FP variable, and ve a BV variable. ite corresponds to the
if-then-else-function defined in the SMT-LIB2 core theory. It returns the first
expression (e1 or f1, for either BV or FP type) if the Boolean argument π is true;
otherwise, it returns the second expression (e2 or f2, depending on the type).
funBool, funF P , or funBV represent interpreted functions. They support an
arbitrary number of different typed arguments (arguments of BV type represented
by en, FP type fn, and boolean type πn) and may be used to represent further

8 M. Krahl et al.

operations as stated in the SMT-LIB2 standard, i.e., fp.roundToIntegral or
fp.isNaN from the FP theory. Furthermore, a user may also provide individual
specified functions, which are currently not part of the SMT-LIB2, such as the
natural logarithm function ln.

Based on LGO−SMT , we define F (−→x) as conjunction of the asserted boolean
constraints of an SMT equation from where we deduce the optimization function
G(−→x) as follows:

F (−→x) =
∧

i∈I

πi → G(−→x) =
∑

i∈I

d(πi)

where the distance function d(πi) translates the expression denoted by the boolean
symbol πi to a real value that is equal to or greater than zero. A value of zero for
d(πi) implies that expression of the symbol πi is true, whereas d(πi) > 0 states
that the expression denoted by πi is false. Therefore, if G(−→x) == 0, it can be
deduced that all boolean constraints of F (−→x) are true. Otherwise, if G(−→x) > 0,
some of the boolean constraints in the conjunction of F (−→x) are false. First, we
define the auxiliary functions θ{U |S}BV (e1, e2) that compute the distance value
between the either signed or unsigned BVs e1 and e2.

θUBV (e1, e2) =
{

toUInt(e1) − toUInt(e2) if toUInt(e1) > toUInt(e2)
toUInt(e2) − toUInt(e1) else

θSBV (e1, e2) =
{

toInt(e1) − toInt(e2) if toInt(e1) > toInt(e2)
toInt(e2) − toInt(e1) else

where the function toUInt transforms a given unsigned BV to a number n ∈ N0
and toInt calculates a number z ∈ Z for a signed BV. It shall be noted that both
signed and unsigned variants of θ always return non-negative values, evaluate
to zero if and only if their arguments are equal, and produce identical results
regardless the order of their arguments.

We define a distance function d(π) mapping boolean constraints to non-
negative real values, ensuring that d(π) = 0 iff the boolean constraint π is
true. For compound boolean expressions, we use additive and multiplicative
compositions (e.g., d(π1 ∧ π2) = d(π1) + d(π2), d(π1 ∨ π2) = d(π1) ∗ d(π2)).
Negation is handled by inversion d(¬π) = 0 if d(π) > 0, and 1 otherwise. For
BVs, d(_) is defined analogously utilizing the previously type-aware distance
function θ{U |S}BV (_,_), that measures the difference between unsigned or signed
operands for a given operator, such as for the operand < and ≤:

d(e1 <{u|s} e2) =
{

0 if e1 <{u|s} e2
θ{U |S}BV (e1, e2) + 1 else

d(e1 ≤{u|s} e2) =
{

0 if e1 ≤{u|s} e2
θ{U |S}BV (e1, e2) else

Similar definitions apply for >,≥,==, ̸= and are reused for FP numbers after
converting the FP operands to unsigned BVs. Due to the special behavior of non-
finite FP numbers, such as NaN or ±∞, these distance functions are only valid

goLoop: SMT-Based Loop Analysis via Global Optimization 9

for finite FP values. Considering all defined variants of d(_) and θ{U |S}BV (_,_),
we can conclude that they satisfy the principles required to ensure equivalence
between the optimization function G(−→x) and the initial SMT formula F (−→x).

4.2 Integration of Loop Semantics

We define LLoop−SMT as an extension of LGO−SMT by adding a boolean loop
statement such as,

Bool π := loop(π1, ((en)∗, (fn)∗, (πn)∗))

which has a Boolean type and becomes true when the loop terminates, i.e., the
loop condition becomes false. It requires a Boolean condition π1 and repeats the
additionally provided arbitrary number of statements until π1 becomes false.
The loop command may redefine the symbols of expressions used as arguments
implicitly during the iterations of the loop. In other words, it may represent
a function of Boolean type that modifies the symbols given as parameters.
By doing so, we can model the side effects the loop imposes on the whole
formula in the optimization function. For instance the following loop-statement
loop((i < 10), ((i← i+ 1))) would increment the variable i ten times by 1 and
return true after the loop has terminated such that i := 10.

The loop-statement is treated as interpreted function that repeatedly executes
the statements in ((en)∗, (fn)∗, (πn)∗) and returns true iff the corresponding
loop terminates. When the loop terminates, its iteration condition π1 must be
false afterwards. Therefore, d(loop(π1, ((en)∗, (fn)∗, (πn)∗))) can be expressed
by d(¬π1) which returns 0 if and only if the interpreted loop statement terminated.

To simplify transforming loop-based programs into SMT equations, we propose
to extend SMT-LIB2 with an experimental layer providing imperative semantics
(at the moment incompatible with the underlying logic of available SMT solvers).
The current standard requires each variable to have a unique symbol name,
which becomes inefficient when variables are updated multiple times within loops.
In traditional bounded model checking, this is handled by unrolling loops and
introducing new symbols for each iteration. However, our approach executes loops
directly, allowing an unknown number of loop iterations which makes static symbol
creation impractical. We therefore introduce a new mutable definition statement:
(define-fun-mut symbol-name) which, unlike (define-fun symbol-name), al-
lows variable reassignment. Additionally, we propose a loop construct as extension
to SMT-LIB2: (loop loop-cond)(loop-iteration-statement+),
where loop-cond is the loop condition variable and loop-iteration-statement+

represents one or many statements which are evaluated in each loop iteration.
The loop-command returns true when the loop terminates. Consequently, it
should not be used as the loop-condition variable within another loop-command.

We illustrate these considerations with an example involving a C implementa-
tion (Listing 4) that tracks elapsed time in seconds using FP arithmetic, inspired
by the Patriot missile system bug [8]. The program contains a loop that "measures"
elapsed time in increments of 0.1 seconds up to a user-defined bound n_bound.

10 M. Krahl et al.

To verify correctness, the program asserts that the absolute error between the
measured and expected time remains within a tolerance of 10−2 seconds. However,
due to the behavior of FP arithmetic, the assertion may fail for large values of
n_bound. In particular, the value 0.1 cannot be represented exactly in FP format,
leading to the accumulation of rounding errors across iterations. Moreover, re-
peated additions of this small constant to the growing FP variable time_seconds
eventually cause value cancellation, such that time_seconds remains the same
value after the addition. Determining the number of loop iterations (i.e., the
value of n_bound) required to violate the assertion is challenging for BMC tools,
as it requires a large unrolling depth k.

Listing 5 presents the corresponding SMT formula, which includes the original,
unmodified loop when applying the goLoop approach (denoted by SMT-Loop).
Following the transformation rules for constructing an objective function from
an SMT equation, Figure 2 depicts the resulting function F (x) for values of
x ∈ [0, 3500], where x represents n_bound. The red dot marks the first global
minimum of zero at x = 3149. With an appropriate GO algorithm, such zero-
valued minima can be located, corresponding to satisfying assignments of the
SMT formula in Listing 5 and thus counterexamples to the assertion in Listing 4.
Despite the presence of multiple local minima in F (x), the basinhopping GO
method required less than 1.2 seconds on our system to locate a zero-valued global
minimum. In contrast, CBMC with a bound of k = 3150 required approximately
1.4 minutes to find the first counterexample.

Listing 4 C implementation of counting time by 0.1 second increments

1 unsigned int n_bound = nondet_uint();
2 unsigned int time_ticks = 0;
3 float time_seconds = 0.0f;
4 double tol = 1e-2;
5
6 while (time_ticks < n_bound)
7 {
8 time_seconds += 0.1f;
9 time_ticks++;

10 }
11
12 double expected = ((double) time_ticks / 10.0);
13 double err = fabs((double) time_seconds - expected);
14 assert(err <= tol);

5 Strengths and Limitations

Overall, the proposed goLoop approach demonstrates promising potential. Due
to the specified translation rules for converting an SMT equation in FP or BV
theory into an optimization function, no further adaptations or modifications of
the involved loop constructs in the analyzed program are required. Furthermore,

goLoop: SMT-Based Loop Analysis via Global Optimization 11

Listing 5 SMT-Loop program for assertion in counting time code

1 (declare-fun |n_bound| () (_ BitVec 32)) ; input variable n_bound as bitvector
2 (define-fun-mut |time_ticks| () (_ BitVec 32) 0)
3 (define-fun-mut |time_seconds| () (_ FloatingPoint32) (0.0))
4 (define-fun |tol| () (_ FloatingPoint64) (1e-2))
5 (define-fun-mut |loop_cond| () Bool (< |time_ticks| |n_bound|))
6 (loop (|loop_cond|)
7 (define-fun-mut |time_seconds| () (_ FloatingPoint32) (+ |time_seconds| 0.1))
8 (define-fun-mut |time_ticks| () (_ BitVec 32) (+ |x| 1))
9 (define-fun-mut |loop_cond| () Bool (< |time_ticks| |n_bound|))

10)
11 (define-fun |expected| () (_ FloatingPoint64) ((fp_64 (/ |time_ticks| 10.0))))
12 (define-fun |err| () (_ FloatingPoint64) (fp.abs(- (fp_64 time_seconds) |expected|)))
13 (assert (not (<= |err| |tol|)))
14 (check-sat)

0 500 1000 1500 2000 2500 3000 3500
0

100

101

102

103

104

105

106

107

108

109
F(x)

Fig. 2: Plot of F(x) for the SMT equation in Listing 5

any derivative-free GO algorithm could be used to systematically search for the
global minimum of the generated optimization function. goLoop also supports
compiling the generated optimization function into a native binary, improving ex-
ecution speed by leveraging the instruction set of the target verification platform
– for example, executing FP instructions directly rather than converting them
into satisfiability problems, as some SMT solvers do via word- or bit-blasting
(e.g. [16]). This further enables the support for dependency functions – whether
used in the loop body or elsewhere in the analyzed program – that exist only in
compiled form or are provided by specific hardware devices, such as functions
from mathematical libraries. Moreover, goLoop offers the potential for parallel
optimization of the same optimization function by leveraging different GO meth-
ods. This also simplifies the exchange of already evaluated information between
the various GO instances, compared to the more complex information exchange
between different SMT solvers.

12 M. Krahl et al.

Nevertheless, goLoop has certain limitations. Programs with infinite loops
cannot be analyzed, as the generated optimization function would still include
the unbounded loop, preventing the GO process from terminating. Likewise,
using goLoop to verify loop termination is limited; setting a timeout for the
optimization function is insufficient without additional knowledge of the program
and its runtime behavior. Finding a loop variant to prove termination is generally
undecidable. Another limitation, is the undecidability of the underlying problem.
Due to the many conditionals in the equations used to construct the optimization
function, it is likely to be non-smooth, non-differentiable, and non-monotonic. As
a result, the function’s plot may be erratic, effectively reducing any GO method to
an implicit brute-force search. Therefore, goLoop is only sound for SMT equations
where the GO algorithm finds a minimum value of zero; otherwise, it is incomplete
and unsound, as a zero-valued minimum may still exist at an unexplored point.
While exhaustively evaluating all points would prove unsatisfiability, the vast
input domain for FP or BV types – especially with multiple variables – makes
this infeasible with current computing capabilities.

6 Conclusion and Outlook
We presented goLoop, a GO-based approach to model checking that handles
terminating but variably bounded loops without explicit unrolling. By introducing
an extended SMT syntax and translation rules for FP and BV theories, goLoop
enables the direct execution of loops within the optimization process. This avoids
the scalability limitations of BMC while maintaining compatibility with a wide
range of derivative-free GO algorithms. Our presented examples – although not
very complex – clearly illustrate the issues BMC encounters when handling loops
with variable bounds, where goLoop could efficiently detect property violations
by leveraging native execution of compiled code. These capabilities make it a
complementary technique to BMC for verifying programs involving loops.

Future work will focus on developing an integrated tool based on the concepts
of goLoop that enables the use of various derivative-free GO methods to automat-
ically solve programs involving loops and constraints encoded in our proposed
extended SMT-LIB2 syntax. This would enable a more sophisticated comparison
between BMC tools and the goLoop approach to evaluate their efficiency in
handling loop-intensive programs. Another aspect will be to analyze how the
optimization function can be refined to improve the effectiveness of the applied
GO methods. Furthermore, we plan to investigate how goLoop can be combined
with existing SMT and BMC frameworks to support richer theories and composite
system models. We also aim to explore parallel optimization strategies to fur-
ther improve scalability for large and complex verification problems, potentially
involving multiple nested loop constructs.

References
1. Alhawi, O.M., Rocha, H., Gadelha, M.R., Cordeiro, L.C., Batista, E.: Verification

and Refutation of C Programs Based on K-Induction and Invariant Inference.

goLoop: SMT-Based Loop Analysis via Global Optimization 13

International Journal on Software Tools for Technology Transfer 23(2), 115–135
(Apr 2021). https://doi.org/10.1007/s10009-020-00564-1

2. Ben Khadra, M.A., Stoffel, D., Kunz, W.: goSAT: Floating-point Sat-
isfiability as Global Optimization. In: 2017 Formal Methods in Com-
puter Aided Design (FMCAD). pp. 11–14. IEEE, Vienna (Oct 2017).
https://doi.org/10.23919/FMCAD.2017.8102235

3. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) Tools and Algorithms for the Construction and
Analysis of Systems. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

4. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded Model Checking Using Sat-
isfiability Solving. Formal Methods in System Design 19(1), 7–34 (Jul 2001).
https://doi.org/10.1023/A:1011276507260

5. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

6. Frohn, F., Giesl, J.: Integrating Loop Acceleration Into Bounded Model Checking.
In: Platzer, A., Rozier, K.Y., Pradella, M., Rossi, M. (eds.) Formal Methods. pp.
73–91. Springer Nature Switzerland, Cham (2025)

7. Fu, Z., Su, Z.: XSat: A Fast Floating-Point Satisfiability Solver. In: Chaudhuri, S.,
Farzan, A. (eds.) Computer Aided Verification. pp. 187–209. Springer International
Publishing, Cham (2016)

8. Grottke, M., Trivedi, K.S.: Fighting Bugs: Remove, Retry, Replicate, and Rejuvenate.
Computer 40(2), 107–109 (2007). https://doi.org/10.1109/MC.2007.55

9. Güdemann, M.: Overview of Bounded Model Checking for Stack-Based Virtual
Machines. In: Go Where the Bugs Are: Essays Dedicated to Wolfgang Reif on
the Occasion of His 65th Birthday. Springer Nature Switzerland, Cham (2025).
https://doi.org/10.1007/978-3-031-92196-4_9

10. Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract Accel-
eration of General Linear Loops. In: Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. p. 529–540. POPL ’14, Association for Computing Machinery,
New York, NY, USA (2014). https://doi.org/10.1145/2535838.2535843,
https://doi.org/10.1145/2535838.2535843

11. Johnson, S.G., Schueller, J.: NLopt: Nonlinear Optimization Library. Astrophysics
Source Code Library p. ascl:2111.004 (Nov 2021)

12. Khairullah, S.S., Elks, C.R.: Self-repairing Hardware Architecture for Safety-critical
Cyber-physical-systems. IET Cyber-Physical Systems: Theory & Applications 5(1),
92–99 (2020). https://doi.org/10.1049/iet-cps.2019.0022

13. Krahl, M., Güdemann, M., Wallentowitz, S.: parSAT: Parallel Solving of Floating-
Point Satisfiability. In: Arusoaie, A., Cheval, H., Iosif, R. (eds.) Proceedings 9th
edition of Working Formal Methods Symposium, Iaşi, Romania, 17 September 2025.
Electronic Proceedings in Theoretical Computer Science, vol. 427, pp. 117–133.
Open Publishing Association (2025). https://doi.org/10.4204/EPTCS.427.8

14. Kroening, D., Lewis, M., Weissenbacher, G.: Under-Approximating Loops in C
Programs for Fast Counterexample Detection. Formal Methods in System Design
47(1), 75–92 (Aug 2015). https://doi.org/10.1007/s10703-015-0228-1

15. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.: Loop
Summarization Using State and Transition Invariants. Formal Methods in System
Design 42(3), 221–261 (Jun 2013). https://doi.org/10.1007/s10703-012-0176-y

14 M. Krahl et al.

16. Niemetz, A., Preiner, M.: Bitwuzla. In: Enea, C., Lal, A. (eds.) Computer Aided Ver-
ification. pp. 3–17. Lecture Notes in Computer Science, Springer Nature Switzerland,
Cham (2023). https://doi.org/10.1007/978-3-031-37703-7_1

17. Solanki, M., Chatterjee, P., Lal, A., Roy, S.: Accelerated Bounded Model Checking
Using Interpolation Based Summaries. In: Finkbeiner, B., Kovács, L. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems. pp. 155–174. Springer
Nature Switzerland, Cham (2024)

18. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau,
D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett,
M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R.,
Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde,
D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald,
A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods
17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

19. Wu, G., Cao, W., Yao, Y., Wei, H., Chen, T., Ma, X.: LLM Meets Bounded Model
Checking: Neuro-symbolic Loop Invariant Inference. In: Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineering. pp.
406–417. ASE ’24, Association for Computing Machinery, New York, NY, USA
(2024). https://doi.org/10.1145/3691620.3695014

20. Xie, X., Chen, B., Zou, L., Liu, Y., Le, W., Li, X.: Automatic Loop Summarization
via Path Dependency Analysis. IEEE Transactions on Software Engineering 45(6),
537–557 (2019). https://doi.org/10.1109/TSE.2017.2788018

Probabilistic Relation-Changing Operators

Raul Fervari1,2,3[0000−0003−0360−0725], Daniel Figueiredo4,5[0000−0003−1727−9098],
and Manuel A. Martins4[0000−0002−5109−8066]

1 FAMAF, Universidad Nacional de Córdoba, Argentina
2 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas, Argentina

3 Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France
4 CIDMA, Department of Mathematics, Universidade de Aveiro, Portugal

5 Association for Innovation and Biomedical Research on Light and Image, Coimbra,
Portugal

Abstract. Relation-changing logics usually deal with dynamic phenom-
ena over discrete models. In order to describe their properties and reason
in this setting, different approaches were proposed, such as syntactical
ones – where the model can be changed due to the use of some logical
operator in the language – or the semantical ones – where the change in
the system is parameterized by the model itself. The relation-changing
paradigm has been studied and extended in the last years by considering,
for instance, paraconsistent and fuzzy proposals. In this work, we aim
to provide relation-changing logics over probabilistic transition systems.
Precisely, we propose two relation-changing operators and explore how
they affect the semantics, for instance by investigating adequate notions
of probabilistic bisimulation.

Keywords: Relation-Changing · Probabilistic Logic · Probabilistic Kripke
Model · Bisimulation · Sabotage Logic · Bridge Logic

1 Introduction

There are many kinds of probabilistic models to describe a probabilistic tran-
sition system. For instance, structures such as Markov Chains, a well-known
example of the wider class of probabilistic automata (see e.g. [17]) play this role.
Together with these models, we can use logical languages to describe features
or reason about them. Different languages can be employed, such as the ones
based on temporal logic (used, for instance, in PRISM to describe properties of
Markov chains [13] and in [12] to describe knowledge) and probabilistic modal
logics (see e.g. [1]), designed to reason about probabilistic Kripke structures.

A different concept associated with transition systems is that of relation-
changing systems. In general, relation-changing systems are discrete state tran-
sition models whose accessibility relation may change after some event, such as
crossing an edge. The exact way this configuration change is produced can vary
from a semantical to a syntactical cause. For instance, we can consider models
such as switch graphs, where the relation changes are encoded by the structure
of the model itself [11]. In these cases, we can explore the model using classical

2 Fervari, Figueiredo, Martins

modal logic, without causing any change directly. Instead, updates are found as
the result of crossing specific edges, according to the model specification. An-
other approach consists on considering a regular Kripke structure and explore
it with a logic which embeds proper relation-changing operators on their syn-
tax. These languages, such as sabotage and bridge logic [2,3,6], contain specific
operators that while evaluating a formula, they cause the remaining subformula
to be evaluated in a different model. In such a model, the accessibility relation
may be different from the original one.

During the last years, the relation-changing paradigm has been implemented
in different classes of models such as paraconsistent [5], weighted [10], fuzzy [7]
and labeled [4,9] models. Also, some applications and computational implemen-
tations have also been developed. For instance, [10] presents a specific tool to deal
with probabilistic cases, by considering very specific weights. Also, in [14], the
same approach is employed in a practical context, showing its applicability for
real-life problems. Other case-studies have been proposed, for instance, in [8,16].
This work aims to develop the study of this area by studying the introduction
of relation-changing operators to probabilistic contexts, instead of considering
preconceived models with limited expressiveness. While this has been done to
models with fuzzy logic [7], probabilistic setting is not derivable as a particu-
lar case, since additional conditions must be imposed over the relation-changing
process, in order to preserve the properties of a probabilistic model.

In this article we present a probabilistic approach for relation-changing logics,
and study associated probabilistic bisimulation notions. In Section 2 we intro-
duce the syntax, semantics and bisimulation notion for the basic probabilistic
modal logic we consider. Section 3 is devoted to exploring probabilistic versions
of sabotage and bridge modalities. Therein, we present their associated notions
of bisimulations and show their respective invariance theorems. We finish in
Section 4 with some remarks and future lines of work.

2 Probabilistic Modal Logic

2.1 Syntax and Semantics

In this section we present some preliminary notions over probabilistic logics. In
what follows, let Prop be a countable set of atomic propositions. Also, for every
relation E, we use the abbreviation E[U] = {v | (u, v) ∈ E for some u ∈ U}.

Definition 1. A probabilistic Kripke model is a tuple M = (W,P, V) where:

– W is a finite set of states or worlds;
– P : W ×W → [0, 1] is the transition probability matrix where for all w ∈W ,∑

w′∈W
P (w,w′) = 1;

– V : Prop → 2W is a function that assigns to each p ∈ Prop the set of states
in which p holds.

Probabilistic Relation-Changing Operators 3

We adopt the probabilistic definition of modal logic in [1]. Notice that the
definition of truth is crisp, i.e., it is either true or false.

Definition 2 (Formulas). The set of formulas is defined recursively as:

φ,ψ ::= p | ¬φ | φ ∨ ψ | ♢ρφ,

where p ∈ Prop and ρ ∈ [0, 1].

Definition 3 (Satisfaction). Let M = (W,P, V) be a probabilistic Kripke
structure, and let w be a state in W . For any probabilistic modal logic formula φ,
we define the satisfaction relation |= recursively as follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬φ iff M, w ̸|= φ
M, w |= φ ∨ ψ iff M, w |= φ or M, w |= ψ

M, w |= ♢ρφ iff
∑

{v | M,v|=φ}
P (w, v) ≥ ρ.

Example 1. To illustrate how the satisfaction is evaluated on a probabilistic
Kripke model, consider the structure depicted in Fig. 1.

w

u v

t

0.4 0.6

1

0.5

0.5

1

Fig. 1. Example of probabilistic Kripke model.

We define a model M = (W,P, V), where W = {u, v, w, t}, P is the transition
probability matrix depicted in Table 1 and V : {p, q} → 2W is defined by
V (p) = {u,w, t} and V (q) = {v, t}.

As example, let us evaluate the formula ♢0.5(p ∨ ♢0.8 q) at the state w:

M, w |= ♢0.5(p ∨ ♢0.8 q) iff
∑

{x∈W | M,x|=p∨♢0.8 q}
P (w, x) ≥ 0.5.

Thus, for each state x ∈ W , we need to check whether M, x |= p ∨ ♢0.8 q,
that holds if and only if M, x |= p or M, x |= ♢0.8 q. Since V (p) = {u,w, t}, we
only need to check the case x = v:

4 Fervari, Figueiredo, Martins

Table 1. Transition probability matrix of model depicted in Fig. 1.

u v w t

u 1
v 0.5 0.5
w 0.4 0.6
t 1

M, v |= ♢0.8 q iff
∑

{y ∈W | M,y|= q}
P (v, y) ≥ 0.8. According to the semantics,

this is the case iff P (v, v) + P (v, t) ≥ 0.8. But then we get 0.5 ≥ 0.8, that is
false.

Hence,
∑

{x∈W | M,x|=p∨♢0.8 q}
P (w, x) ≥ 0.5 holds iff P (w,w) + P (w, u) +

P (w, t) ≥ 0.5, iff 0.4 ≥ 0.5, which is false.
∴ M, w ̸|= ♢0.5(p ∨ ♢0.8 q).

2.2 Bisimulation

We now introduce a definition of bisimulation for the basic probabilistic case.
While the classical definition usually defines bisimulation as an equivalence rela-
tion over the states of a probabilistic Kripke model, we introduce a version here
to relate two different probabilistic Kripke models.

In [15], Panangaden studies probabilistic structures with labeled edges but
without propositions. In that paper, the author introduces the definition of dy-
namic relation based on the work of Breugel & Worrell [19,20], which does not
require the relation to be an equivalence relation. Moreover, he proves that a
dynamic relation implies the existence of a bisimulation relation. There, he was
also able to prove the invariance and Hennessy-Milner theorem for finite models.
Despite that paper considers a probabilistic Kripke structure with labels, we use
it as the basis for our definition within a context that also considers propositions.

Definition 4 (Bisimulation). Let M = (W,P, V) and M′ = (W ′, P ′, V ′) be
two probabilistic Kripke models and E ⊆ W × W ′. We say that a nonempty
relation E is a bisimulation from M to M′ if for every w ∈ W and w′ ∈ W ′

such that wEw′, we have

atoms: for any p ∈ Prop, w ∈ V (p) iff w′ ∈ V ′(p),
zigzagprob: for any U ⊆W ,

∑

u∈U
P (w, u) ≤

∑

u′∈E[U]

P ′(w′, u′)

With this definition at hand, we are able to prove the following characteri-
zation result, usually called the invariance under bisimulation theorem.

Theorem 1. Let M = (W,P, V) and M′ = (W ′, P ′, V ′) be two probabilistic
Kripke models and E ⊆ W ×W ′ a bisimulation from M to M′. Then for any
(w,w′) ∈ E and any formula φ we have

M, w |= φ iff M′, w′ |= φ

Probabilistic Relation-Changing Operators 5

Proof. The proof is obtained as a fragment of the proof of Theorem 2, that will
be presented later on the paper. ⊓⊔

3 Relation changing operators

This section presents our main contribution, which is defining novel logical lan-
guages which embed a relation-changing operator, interpreted over probabilistic
Kripke structures. The languages extend those in e.g. [18,1]. The ‘update’ modal-
ity (written generally ♦σ here) will have two possible interpretations. First, as a
sabotage-like modality (see [6,2,3]) in which the probability is subtracted from
the edge accessing a chosen successor of the evaluation point, while it is trans-
ferred to another edge. Second, we introduce a bridge-like modality [6,2], in
which the probability is instead taken from some edge to be added to the edge
accessing the chosen successor.

The language we use is given by the following BNF:

φ,ψ ::= p | ¬φ | φ ∨ ψ | ♢ρφ | ♦σφ,

where p ∈ Prop, ρ ∈ [0, 1] and σ ∈]0, 1[. We denote the full set of formulas
generated by the BNF above by Form. In the following, if the context is clear,
we will use both ♢ρ and ♦ρ.

The idea of changing a probabilistic relation implies that the transition prob-
ability matrix may change. We define Prob(W), the set of all transition proba-
bility matrices over the set W as:

Prob(W) = {P ∈ [0, 1]W×W : ∀w ∈W,
∑

w′∈W
P (w,w′) = 1}.

3.1 Probabilistic Sabotage Operator

Let us start by introducing the semantics of a local sabotage modality. In [6,2], a
local sabotage is interpreted as moving the evaluation of the formula to a succes-
sor of the current point, while removing the traversed edge. In the graded/fuzzy
case [7], edges have associated values, so the sabotage is carried out instead by
reducing the value of the traversed edge. Here, we will follow a similar approach,
but maintaining the properties of a probabilistic Kripke model.

Definition 5. Let M = (W,P, V) be a probabilistic Kripke structure, and let w
be a state in W . For any formula φ ∈ Form, we define the satisfaction relation
|= recursively as follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬φ iff M, w ̸|= φ
M, w |= φ ∨ ψ iff M, w |= φ or M, w |= ψ

M, w |= ♢ρφ iff
∑

{v|M,v|=φ}
P (w, v) ≥ ρ

M, w |= ♦ρφ iff exists v ∈W s.t. ρ ≤ P (w, v) ̸= 1, and M−(w,v)
ρ , v |= φ,

6 Fervari, Figueiredo, Martins

where M−(w,v)
ρ = (W,P

−(w,v)
ρ , V), with:

– P
−(w,v)
ρ (w, v) = P (w, v) − ρ;

– P
−(w,v)
ρ (w, t) = P (w, t) +

ρ.P (w, t)

1 − P (w, v)
, if t ̸= v;

– P
−(w,v)
ρ (s, t) = P (s, t), if s ̸= w.

Note that M−(w,v)
ρ is a well-formed model, since it is updated in the con-

text of the precondition P (w, v) ≥ ρ and, according to its definition, P
−(w,v)
ρ ∈

Prob(W).

The semantic interpretation of the sabotage operator describes a scenario
in which the probability of the event represented by an edge is reduced. When
that is the case, the probability of the remaining ones (that also leave from the
same origin state) is increased, in order to guarantee that the probability of all
leaving edges sums to 1. For each of these edges, the increase is proportional
to their pre-existing probability, in order to preserve the likelihood of each one
being crossed. This is illustrated in Example 2.

Example 2. Let us consider the model (W,P, V) introduced in Example 1, and
check if w satisfies ♦0.4p. By the semantics we have M, w |= ♦0.4p iff ∃x ∈ W

s.t. 0.4 ≤ P (w, x) ̸= 1, and M−(w,x)
0.4 , x |= p.

P (w, x) ≥ 0.4 implies x = u or x = v. Although v ̸∈ V (p), the formula is sat-

isfied because M−(w,u)
0.4 , u |= p. Moreover, the model M−(w,u)

0.4 = (W,P
−(w,u)
0.4 , V)

is illustrated in Fig. 2.

w

u v

t

0 1

1

0.5

0.5

1

Fig. 2. The probabilistic Kripke model (W,P
−(w,u)
0.4 , V).

3.2 Probabilistic Bridge Operator

Now it is time to move to the bridge case, generalizing [6,2], and being more
specific that in the graded case from [7]. The idea is that if there no way to access
some point with a certain probability value, the evaluation is moved to such a
point, and the value is added to the traversed edge. This is similar to the graded

Probabilistic Relation-Changing Operators 7

case, but here we need to be careful to maintain the probability distribution.
This is achieved by proportionally transferring the value from other edges to the
intended one.

Definition 6. The satisfiability relation |= is defined as:

M, w |= p iff w ∈ V (p)
M, w |= ¬φ iff M, w ̸|= φ
M, w |= φ ∨ ψ iff M, w |= φ or M, w |= ψ

M, w |= ♢ρφ iff
∑

{v|M,v|=φ}
P (w, v) ≥ ρ

M, w |= ♦ρφ iff exists v ∈W s.t. P (w, v) + ρ ≤ 1, and M+(w,v)
ρ , v |= φ,

where M+(w,v)
ρ = (W,P

+(w,v)
ρ , V), with:

– P
+(w,v)
ρ (w, v) = P (w, v) + ρ;

– P
+(w,v)
ρ (w, t) = P (w, t) − ρ.P (w, t)

1 − P (w, v)
, if t ̸= v;

– P
+(w,v)
ρ (s, t) = P (s, t), if s ̸= w.

Again, note that M+(w,v)
ρ is a well-formed model.

The semantics of the bridge operator depicts a case where either the prob-
ability of an event to occur increases or some new transition is possible. Thus,
the probability assigned to the other edges that also leave from the same origin
state must decrease. As in the case of the “sabotage”, this reduction is obtained
in a proportional way, based on the previous value of each edge probability. This
is illustrated in Example 3.

Example 3. Let us recall the model (W,P, V) from Example 1 and check if v
satisfies ♦0.4q. By the semantics we have M, v |= ♦0.4q iff ∃x ∈ W s.t. 0.4 ≤
P (v, x) ̸= 1, and M+(v,x)

0.4 , x |= q.
P (v, x) ≤ 0.4 implies x = w or x = t. Although w ̸∈ V (p), the formula is

satisfied because M+(v,t)
0.4 , t |= p. Moreover, the model M+(v,t)

0.4 = (W,P
+(v,t)
0.4 , V)

is illustrated in Fig. 3.

3.3 Bisimulation

Based on the Def. 4, we introduce a notion of bisimulation for the probabilistic
language obtained by adding either the sabotage or bridge operator.

Definition 7 (Bisimulation). Let M = (W,P, V) and M ′ = (W ′, P ′, V ′) be
two probabilistic Kripke models. We say that a non-empty relation E ⊆

(
W ×

Prob(W)
)
×
(
W ′×Prob(W ′)

)
is a ρ-sabotage (resp. ρ-bridge) bisimulation from

M to M′ if, for every pair
(
(w,P), (w′, P ′)

)
∈ E, the following holds:

atom: w ∈ V (p) iff w′ ∈ V ′(p), for all p ∈ Prop;

8 Fervari, Figueiredo, Martins

w

u v

t

0.4 0.6

1

0.3
0.3

0.4

1

Fig. 3. The probabilistic Kripke model (W,P
+(v,t)
0.4 , V).

zigzagprob: for any U ⊆W ,
∑

u∈U
P (w, u) ≤

∑

(u′,P ′) ∈ ⋃
u∈U E[(u,P)]

P ′(w′, u′);

r−zigprob : for any u ∈ W s.t. 1 ̸= P (w, u) > ρ (resp. P (w, u) + ρ < 1), exists
u′ ∈W ′ such that:
1. P (w, u) ≤ P ′(w′, u′) < 1 (resp. P (w, u) ≥ P ′(w′, u′)), and

2.
(
u, P

−(w,u)
ρ

)
E
(
u′, P ′−(w′,u′)

ρ

)
(resp.

(
u, P

+(w,u)
ρ

)
E
(
u′, P ′+(w′,u′)

ρ

)
);

r−zagprob : for any u′ ∈ W ′ s.t. 1 ̸= P ′(w′, u′) > ρ (resp. P ′(w′, u′) + ρ < 1),
exists u ∈W such that:
1. P ′(w′, u′) ≤ P (w, u) < 1 (resp. P ′(w′, u′) ≥ P (w, u) and

2.
(
u, P

−(w,u)
ρ

)
E
(
u′, P ′−(w′,u′)

ρ

)
(resp.

(
u, P

+(w,u)
ρ

)
E
(
u′, P ′+(w′,u′)

ρ

)
).

Moreover, for ρ-bridge bisimulation, we also impose that for all w ∈W,w′ ∈W ′,
E[{(w,P)}] ̸= ∅ ≠ E−1[{(w′, P ′)}].

We say that E is a sabotage bisimulation (resp. bridge bisimulation) if it is a
ρ-sabotage (resp. ρ-bridge) bisimulation for every ρ ∈ [0, 1]. Moreover, if E is a
bisimulation and (w,P)E(w′, P ′), we say that w and w′ are two sabotage (resp.
bridge) bisimilar states.

We note that our definition of sabotage bisimulation does not fully generalize
the classical one. However, this is indeed caused by the semantical interpreta-
tion of the new operator ♦ρ that can distinguish two probabilistic Kripke models
such as the ones illustrated in Fig. 4, which are bisimilar according to the clas-
sical definition. Thus, contrary to the classical case, we need to consider both
r−zigprob and r−zagprob conditions. As it is possible to note in Fig. 4, the
r−zigprob condition is verified from left to right model, but not in the opposite
direction.

Theorem 2 (Invariance). Let M = (W,P, V) and M′ = (W ′, P ′, V ′) be two
probabilistic Kripke models and let E ⊆

(
(W ×Prob(W)

)
×
(
W ′×Prob(W ′)

)
be

a sabotage (resp. bridge) bisimulation. Then, (w,P)E(w′, P ′) implies M, w |= φ
iff M, w′ |= φ, for every φ ∈ Form, under sabotage (resp. bridge) semantics.

Proof. We prove the theorem by induction over the structure of formulas. We
firstly consider the sabotage semantics.

Base case:

Probabilistic Relation-Changing Operators 9

w

v u

0.3 0.7

11

x

1

Fig. 4. Two model whose states are bisimilar but not sabotage/bridge bisimilar.

– If φ ∈ Prop, then the result follows from atom from Def. 7.

Inductive cases:

– If φ = ¬ψ, then M, w |= ¬ψ iff M, w ̸|= ψ. By IH, M′, w′ ̸|= ψ, and then
M′, w′ |= ¬ψ.

– If φ = ψ ∨ χ, then M, w |= ψ ∨ χ iff M, w |= ψ or M, w |= χ. By IH, we get
M′, w′ |= ψ or M′, w′ |= χ, hence M′, w′ |= ψ ∨ χ.

– If φ = ♢ρψ, then M, w |= ♢ρψ iff
∑

(v | M,v|=φ) P (w, v) ≥ ρ . Note that (by

Def. 7)
∑

{v|M,v|=ψ} P (w, v) ≤ ∑
{v′|(v′,P ′)∈⋃

{v | M,v|=ψ} E[(v,P)]} P
′(w′, v′) ≤∑

{v′ | M′,v′|=ψ} P
′(w′, v′) (since (v, P)E(v′, P ′), and by IH). Moreover, by

using the same reasoning we can conclude that
∑

{v | M,v|=¬ψ} P (w, v) ≤∑
{v′ | M′,v′|=¬ψ) P

′(w′, v′). Since for all w ∈ W ,
∑
v∈W P (w, v) = 1 and

for all w′ ∈ W ′,
∑
v′∈W ′ P (w′, v′) = 1, we get that

∑
{v | M,v|=ψ) P (w, v) =∑

{v′ | M′,v′|=ψ} P
′(w′, v′), because every w ∈ W ∪W ′ satisfies either ψ or

¬ψ. Hence, we can conclude M, w |= ♢ρψ iff M′, w′ |= ♢ρψ.
– If φ = ♦ρψ, then M, w |= ♦ρψ iff exists v ∈ W s.t. ρ ≤ P (w, v) < 1,

and M−(w,v)
ρ , v |= ψ. From r−zigprob in Def. 7, we conclude that exists

v′ ∈ W ′ s.t. P (w, v) ≤ P ′(w′, v′) and (v, P
−(w,v)
ρ)E(v′, P ′−(w′,v′)

ρ). Thus,

by IH, exists v′ ∈ W ′, s.t. ρ ≤ P ′(w′, v′) < 1,and M′−(w′,v′)
ρ , v′ |= ψ, and

therefore M′, w′ |= ♦ρψ.
The reciprocal implication is proved analogously, using r−zagprob.

Finally, for bridge semantics, the result is obtained using the analogous rea-
soning. Here we note that the additional condition that for all w ∈W , w′ ∈W ′,
E[{(w,P)}] ̸= ∅ ̸= E−1[{(w′, P ′)}] ensures that it is not possible to create a
bridge to a new state that was previously not bisimilar to any other. This is not
required for sabotage because the probability assigned to edges with probability
of 0 is never changed. ⊓⊔

Example 4. Let Prop = {p} and consider the two probabilistic Kripke models,
as shown in Fig. 5. We denote the model on the left by M = (W,P, V) and
the one on the right by M′ = (W ′, P ′, V ′), with V (p) = {u, v, x} and V ′(p) =
{u′, v′, x′, y′}.

It is possible to verify that the following relation is a sabotage-bisimulation:
E = {

(
(w,P), (w′, P ′)

)
,
(
(z, P), (z′, P ′)

)
}

∪ {(t, P) × (t′, P ′) : t ∈ {u, v, x} and t′ ∈ {u′, v′, x′, y′}}

10 Fervari, Figueiredo, Martins

w

v

u

x

z

0.2

0.2

0.1

0.5

1

1

1

1

w′

v′

u′

x′

y′

z′
0.2

0.1
0.1

0.1

0.5

1

1

1

1

1

Fig. 5. Example of models with sabotage/bridge-bisimilar states.

∪ {(z, P
−(w,z)
ρ) × (z′, P ′−(w′,z′)

ρ) : ρ ∈]0, 0.5]}
∪ {(t, P

−(w,t)
ρ) × (u′, P ′−(w′,u′)

ρ) : t ∈ {u, v} and ρ ∈]0, 0.2]}
∪ {(x, P

−(w,x)
ρ) × (t′, P ′) : t′ ∈ {v′, x′, y′} and ρ ∈]0, 0.1]}

∴ w is bisimilar to w′, z is bisimilar to z′ and u, v, x are bisimilar to u′, v′,
x′, y′.

4 Conclusion and future work

In this paper, we extend the paradigm of relation-changing logics to probabilistic
transition systems. While traditional relation-changing logics address dynamic
phenomena over discrete models, we adapt this framework to settings where
transitions are governed by probabilities. Specifically, we introduce two novel
relation-changing operators tailored to the probabilistic case and analyze their
impact on the underlying semantics. To support reasoning in this setting, we
also investigate appropriate notions of probabilistic bisimulation, showing how
these operators interact with key behavioral equivalences. This work thus opens
a new direction in the study of relation-changing logics, complementing existing
proposals in paraconsistent, fuzzy, and graded contexts [5,7].

This work is closely related to graded relation updates from [7], where classi-
cal relation-changing operators are extended to graded (fuzzy) relational struc-
tures. While that approach captures degree-based updates of accessibility, our
proposal focuses on distributional updates over probabilistic transition systems,
thus providing a complementary perspective on extending relation-changing log-
ics beyond the classical setting.

As future work, we aim to develop model checking tools for relation-changing
contexts. Although in a different context, rPRISM [10] – a tool which was in-
tegrated with PRISM – can be a starting point. We also would like to study
the decidability status/complexity of the model checking problem and propose
an automatic model-checker that integrates probabilistic sabotage and bridge
operators.

Also, we would like to explore different semantics for relation-changing op-
erators. In this approach, the changing operators are defined in such a way that

Probabilistic Relation-Changing Operators 11

we move to a new accessible state (with an appropriate probability) after the
change of the model. It would be interesting to study the case where we simply
update the model without moving from the current state. A global version of
these operators – where changes are not made locally but anywhere in the tran-
sition probability matrix of the model – would also be an interesting topic to
explore.

Finally, we intend to explore the existence of a Hennessy-Milner theorem
for finite models concerning our definition of bisimulation in the probabilistic
setting, as well as in the model changing case.

Acknowledgments. D. Figueiredo and M. A. Martins acknowledge the support
of CIDMA under the Portuguese Foundation for Science and Technology (FCT,
https://ror.org/00snfqn58) Multi-Annual Financing Program for R&D Units,
grants UID/4106/2025 and UID/PRR/4106/2025; and by FCT – Fundação para
a Ciência e a Tecnologia through SACCCT- IC&DT - Sistema de Apoio à Criação
de Conhecimento Cient́ıfico e Tecnológico, as part of COMPETE2030, within
the project BANKSY with reference number 15253. R. Fervari is supported by
Agencia I+D+i grant PICT 2021-00400, the EU H2020 research and innovation
programme under the Marie Sk lodowska-Curie grant agreements 101008233 (MIS-

SION), the IRP SINFIN, SeCyT-UNC grant 33620230100178CB, and as part of
France 2030 program ANR-11-IDEX-0003.

References

1. Alessandro Aldini, Gianluca Curzi, Pierluigi Graziani, and Mirko Tagliaferri. A
probabilistic modal logic for context-aware trust based on evidence. International
Journal of Approximate Reasoning, 169:109167, 2024.

2. Carlos Areces, Raul Fervari, and Guillaume Hoffmann. Relation-changing modal
operators. Logic Journal of the IGPL, 23(4):601–627, 2015.

3. Guillaume Aucher, Johan van Benthem, and Davide Grossi. Modal logics of sab-
otage revisited. Journal of Logic and Computation, 28(2):269–303, 2018.

4. Suene Campos, Daniel Figueiredo, Manuel A. Martins, and Regivan Santiago. La-
beled fuzzy reactive graphs. Fuzzy Sets and Systems, page 109320, 2025.

5. Diana Costa, Daniel Figueiredo, and Manuel A. Martins. Relation-changing models
meet paraconsistency. Journal of Logical and Algebraic Methods in Programming,
133:100870, 2023.

6. Raul Fervari. Relation-Changing Modal Logics. PhD thesis, Universidad Nacional
de Córdoba, 2014.

7. Raul Fervari, Daniel Figueiredo, and Manuel A. Martins. Graded relation updates
in modal logic. In Logic, Language, Information, and Computation - 31st Inter-
national Workshop, WoLLIC 2025, volume 15942 of Lecture Notes in Computer
Science, pages 278–292. Springer, 2025.

8. Daniel Figueiredo and Lúıs Soares Barbosa. Reactive models for biological regula-
tory networks. In International Symposium on Molecular Logic and Computational
Synthetic Biology, pages 74–88. Springer, 2018.

9. Daniel Figueiredo, Manuel A. Martins, and Lúıs S Barbosa. A note on reactive
transitions and reo connectors. In It’s All About Coordination: Essays to Celebrate
the Lifelong Scientific Achievements of Farhad Arbab, pages 57–67. Springer, 2018.

12 Fervari, Figueiredo, Martins

10. Daniel Figueiredo, Eugénio Rocha, Manuel A. Martins, and Madalena Chaves.
rPrism – a software for reactive weighted state transition models. In Hybrid Systems
Biology, pages 165–174, Cham, 2019. Springer International Publishing.

11. Dov M Gabbay and Sérgio. Marcelino. Global view on reactivity: switch graphs
and their logics. Annals of Mathematics and Artificial Intelligence, 66(1-4):131–
162, 2012.

12. Joseph Y Halpern and Mark R Tuttle. Knowledge, probability, and adversaries.
Journal of the ACM (JACM), 40(4):917–960, 1993.

13. Marta Kwiatkowska, Gethin Norman, and David Parker. Stochastic model check-
ing, pages 220–270. Springer, 2007.

14. Diogo Mendes, Daniel Figueiredo, Carlos Alves, Ana Penedones, Beatriz Costa, and
Francisco Batel-Marques. Impact of the covid-19 pandemic on cancer screenings
in portugal. Cancer Epidemiology, 88:102496, 2024.

15. Prakash Panangaden. Probabilistic bisimulation. In Davide Sangiorgi and Jan
Rutten, editors, Advanced Topics in Bisimulation and Coinduction, volume 52 of
Cambridge Tracts in Theoretical Computer Science, pages 290–322. Cambridge
University Press, Cambridge, 2011.

16. Regivan Santiago, Manuel A. Martins, and Daniel Figueiredo. Introducing fuzzy
reactive graphs: a simple application on biology. Soft Computing, 25(9):6759–6774,
2021.

17. Roberto Segala. Modeling and verification of randomized distributed real-time sys-
tems. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA,
1995.

18. Afsaneh Shirazi and Eyal Amir. Probabilistic modal logic. In Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26, 2007, pages
489–495. AAAI Press, 2007.

19. Franck van Breugel and James Worrell. An algorithm for quantitative verification
of probabilistic transition systems. In CONCUR 2001 — Concurrency Theory,
pages 336–350, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

20. Franck van Breugel and James Worrell. Towards quantitative verification of prob-
abilistic transition systems. In Fernando Orejas, Paul G. Spirakis, and Jan van
Leeuwen, editors, Automata, Languages and Programming, pages 421–432, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

Reconfigurable stochastic multi-formalism
models: an approach based on Maude

Lorenzo Capra1 and Marco Gribaudo2

1 Università degli Studi di Milano, Milano, Italy
2 Politecnico di Milano, Milano, Italy

Abstract. Multiformalism modeling selects the best formalism for sys-
tem components, while maintaining overall coherence. The escalating
complexity and adaptability of systems necessitate the development of
dynamic models to address them. We propose a framework based on
Maude for reconfigurable multiformalism models. Two alternative solu-
tions are presented. A server management case study using stochastic
Petri nets and multiclass queuing networks showcases the feasibility of
the approach. Experiments reveal that integrating rewriting techniques
in multiformalism modeling potentially improves expressiveness and eval-
uation efficiency. Our short-term goal is to enhance SIMTHESys multi-
formalism software with dynamic transformations, utilizing Maude as the
underlying rewriting engine.

Keywords: Multiformalism modeling · Rewriting systems · Model re-
configuration · Performance evaluation · Petri nets · Queuing networks

1 Introduction

Real systems require flexible modeling to be effectively evaluated, capturing
critical features with appropriate tools and descriptions. Different aspects require
different representations to minimize information loss. Specialists create tools
that are tailored to their goals. For realistic systems, single-formalism models
become impractical.

Multiformalism modeling evaluates system properties by integrating diverse
techniques to address both qualitative and, in particular, quantitative aspects.
It allows selecting suitable formalisms for each system component, enhancing
expressiveness and interpretability while maintaining unity. Effective analysis
of complex models requires coordinated strategies. Advanced methodologies use
composability to tackle modeling complexities, employing flexible tools like de-
composition and symbolic techniques to handle challenges like submodel mis-
alignment and state-space explosion.

However, the increasing (self-)adaptability and reconfiguration requirements
of modern distributed systems necessitate the development of dynamic multifor-
malism models to address them. We here propose a modular framework based on
Maude, a purely declarative language with Rewriting Logic sematics, for reconfig-
urable multiformalism models: We present and discuss two alternative solutions,

2 L. Capra, M. Gribaudo

using a server management case study (integrating stochastic Petri nets and
multiclass queuing networks) to showcase the feasibility of the approach. We
also provide some experimental data.

Section 2 discusses related work; Section 3 recalls the main features of Maude;
Section 4 presents the case study; the core Section 5 introduces a Maude-based
framework for reconfigurable multiformalism models using the case study as an
illustrative example; two alternative solutions are proposed; a few experimen-
tal data for the case study analysis are given in Section 6; Finally, Section 7
concludes the paper and outlines the ongoing work.

2 Related work

Multiformalism modeling [13][16], often paired with multisolution, is well-studied
in fixed combinations, such as DEDS [3], SMART [9] and SHARPE [17], and
in dynamic combinations, such as AToM3 [15] and Möbius [11]. This paper’s
research may relate to OsMoSys [12] and SIMTHESys [14][1], which use a mul-
tisolution approach. These systems, along with Möbius, create an optimized
executable model from a descriptive representation that includes behaviors of
programmatically defined model elements. OsMoSys solves models by orches-
trating workflows that activate external solvers based on intermediate submodel
results. SIMTHESys separates model descriptions from model elements, allowing
it to define interformalism interactions and provide analysis tools. This enables
automatic creation of multiformalism solvers for models based on consistent for-
malisms. This feature allows defining new formalisms and their combinations,
enabling users to experiment and develop optimized tools with minimal soft-
ware development if successful. [2] presents an overview of the characteristics
and limits of these tools.

3 The Maude System

Maude [10] is an expressive, high-performance, purely declarative language with
rewriting logic semantics [4]. The Maude runtime provides various facilities for
model checking, verification of LTL formulae, and symbolic reachability. Maude
has served as a logical framework for various other formalisms, including Petri
nets, Automata, and Process Algebras, which, despite their strength, do not
possess the essential features needed for intuitively defining adaptable systems.

Maude syntax is based on equations and rules. Each side of a rule or equation
is a term of a certain kind, which may involve variables. Rules and equations
operate through intuitive rewriting, where instances on the left side are replaced
with instances on the right.

A functional module defines operations using equations as simplifications.
It outlines a equational theory (Σ,E ∪ A) of membership equational logic : Σ
is the signature, which includes the declaration of sorts, subsorts, kinds3 and
3 are implicit equivalence classes formed by connected components of sorts under the

subsort partial order, and terms of a kind without a sort denote errors.

Title Suppressed Due to Excessive Length 3

operators; E contains equations and membership axioms; and A contains the
equational attributes of operators (e.g., assoc, comm, ide). The mathematical
model of (Σ,E ∪ A) is the initial algebra TΣ/E∪A, formed by the equivalence
classes of the relation induced by E ∪ A in the ground-term algebra TΣ . Under
the conditions (modulo-A) of confluence, subsort decreasing, and termination on
(Σ,E), any ground term is rewritten in a unique canonical form that has the least
sort in the subsort PO: The canonical term algebra is isomorphic to the initial
algebra, which makes the denotational and operational semantics consistent.

A system module includes rewrite rules that represent local transitions in
a concurrent system. It defines a rewrite theory [4] R = (Σ,E ∪ A,R). Here,
(Σ,E ∪A) acts as the underlying equational theory, and R is a set of rewriting
rules. This theory captures the behavior of a concurrent system, with (Σ,E∪A)
defining the algebraic structure of the states and R describing the concurrent
transitions. The initial model of R provides each kind k with a labeled transition
system (TS) where states are elements of TΣ/E∪A,k and state transitions occur

as [t]
[α]→ [t′], with [α] denoting an equivalence class of rewrites. The coherence

property [10] ensures that a strategy reducing terms to canonical forms before
applying rules (adopted by the Maude rewrite engine) is sound and complete, if
a matching-modulo-A algorithm is used.

BA

C

B

N

A

C

V2

V?

BA

C

V1

A->B

BA

C

V0

PN1

PN3

PN2

QN1

T1

T2 P2

P1

T3

T4 P4

P3

T5P5

Q1

Q2 Q3

Q4 CS1

P6

T6 T7

T8

Fig. 1. Multiformalism model of the case-study: on the left, the entire system (V ?:
reconfigurable server sub-system; QN1 backup single server; PN1 and PN2: fault-repair
modulating processes; PN3: request injection process); on the right, the three possible
server-reconfiguration scenarios modulated by PN1.

4 L. Capra, M. Gribaudo

4 Case Study

The case study consists of a server that encompasses two computing facilities,
both of which are susceptible to faults and capable of undergoing repairs. This
is an advance of the example presented in [14], where the implementation within
SIMTHESys is elucidated in terms of formalism definitions. The facilities possess
buffers for incoming requests and cease to accept further requests upon buffer
depletion. A front-end system allocates requests to the facilities, allowing the
second facility to undertake jobs initially directed to the first, provided that
they are not processed before a timeout occurs. Requests are executed in two
sequential stages, which, under optimal operating conditions, are performed by
two cooperatively functioning servers. To manage periods of high request arrival
rates, any request that resides in the queue beyond a predetermined threshold
is diverted to a third backup server. All three nodes are periodically unavailable
due to scheduled maintenance. In instances where one node in the tandem sys-
tem becomes unavailable, the remaining node assumes responsibility for both
stages of processing. The system is represented through three stochastic Petri
Nets (SPN) submodels, denoted PN1, PN2, and PN3, which address fault/repair
processes and request injection. Additionally, two Multiclass Queuing Networks
(MQN) submodels, with exponentially distributed service times (QN1 and V ?),
are employed for the three service nodes (refer to Fig. 1).

Multiformalism interactions among SIMTHESys submodels are realized uti-
lizing SIMTHESys bridges, which can interact comprehensively with the MQN
and SPN elements. Specifically, the arc directed from the SPN place P4 to the
MQN queue Q1 serves as an enabling arc (a self-loop in SPN). Furthermore,
the arc from an SPN transition to an MQN queue functions like an output arc
by enqueuing a task upon the SPN transition firing. In contrast, arcs from an
MQN queue (designated as Q1, Q3, or CS1) to the SPN place P5 generate a to-
ken within the place upon completion of the queue job processing. Additionally,
arcs going from an MQN queue to an SPN transition (Q2 → T6, Q3 → T7, or
Q4 → T8) serve as an extension of the transition enabling in SPN, subtracting
a task from the queue upon their activation.

The figure’s left section illustrates the primary model: submodel PN3, which
consists of place P5 and transition T5, is responsible for defining the arrivals of
requests to the system. The principal service is represented by the rewritable
model indicated as V ?, while the backup node comprises a submodel, QN1,
which includes the singular queue QN1

. The subsystems are regulated by the
Petri net models PN1 and PN2 (covered by straightforward P-semiflows, that is,
conservative): the backup node exhibits an On-Off behavior, as described by the
sub-models PN2 and QN1, while the primary subsystem is managed by a basic
Petri net characterized by two places and two tokens (PN1). The replacement
of the component V ? with V 2, V 1, or V 0, as depicted on the right side of the
figure, depends on the token count in place P2.

If both servers are available (two tokens in P2), the submodel V 2 is used,
where each server is represented by an individual queue (Q2 and Q3). If one
node is down (one token in P2), the submodel is replaced by the single queueing

Title Suppressed Due to Excessive Length 5

station Q4 (submodel V 1): the stages become two classes of customers. If a job
in the first stage finishes, it enters the class switch (CS1) and reenters the server
with the class representing the second stage; otherwise, it leaves the system. If
both nodes are down, no service is performed, and the system is stopped. In this
case, the queue is replaced by a place (P6 of the submodel V 0), whose marking
encodes the current stage of the corresponding job.

5 Using Maude as a framework for reconfigurable
multi-formalism models

In this section, we discuss the use of Maude (and its runtime support) as a
rewriting engine for multi-formalism models. The advantages of this choice are
multiple: flexibility and modularity of the modeling, efficiency, soundness, ease
of integration with existing tools, and upgrade. We inherit the Maude facilities
for formal verification; in addition, we can exploit a new quantitative analysis
capability based on the association of a Markov process to Maude executable
modules, introduced in [8,7] for rewritable SPN and fully developed in [6].

Though our framework is off-the-shelf, rewriting engines allow for dynamic
submodel modifications (OsMoSys late binding feature), integrating into SIM-
THESys multiformalism solvers. In perspective, this could enable model rewrit-
ing at solution time, simplifying and streamlining the solution process, and mak-
ing model design easier and more accessible.

After intuitively describing the general approach to multiformalism modeling
using Maude, we will instantiate it in the case study.

We skip some technical details and refer to https://github.com/lgcapra/
rewpt/tree/main/multiformalism for a complete description. However, we in-
clude a few code excerpts for the reader’s convenience.

5.1 Reconfigurable multiformalism models in Maude

The multiformalism encoding in Maude is based on a simple, compact, and ex-
tensible hierarchy of modules, some of which are parametrized. We propose two
solutions, one characterized by simplicity and the other more elegant and concise,
though based on advanced features of Maude module operations. In the following
description, we focus on the former. Our aim is to reuse existing modules (that
encode particular formalisms) for convenience.

A parametrized module uses type parameters expressed by (functional) theo-
ries. These theories establish module interfaces by setting syntactic and semantic
properties for parameter modules. They are similar to functional modules but
are not required to be Church-Rosser or terminating. Theories have loose seman-
tics, allowing any algebra that meets the equations and membership axioms to
be acceptable. In Maude, views link a source theory to a target module or theory,
detailing the mapping of sorts and operators.

6 L. Capra, M. Gribaudo

Solution 1 As usual, the formalization is based on multisets, which are imple-
mented both as a commutative monoid built on a set or in a more compact way
as weighted sums (module BAG{X :: TRIV}), for efficiency reasons.

Both solutions rely upon a fundamental concept: a multiformalism model is
constructed by integrating multiple heterogeneous model components (e.g., Petri
nets, queue networks, BPMN, activity diagrams, process algebra, etc.) that col-
lectively maintain a notion of distributed state. This notion is formalized by the
theory STATE (see the excerpt below), which requires two sorts State, LocState
linked by the subsort relationship (corresponding to the set ⊆ relation) and
an associative-commutative (AC) juxtaposition operation. This theory describes
the parameter of the functional module NETWORK{L :: STATE}, which provides
the simple Abstract Data Type (ADT) of a multiformalism model.

The abstract structure of the model is defined by the sort Network and the
AC juxtaposition _,_ having the ground term emptyNetW as identity. In other
words, a multiformalism model is a multiset (i.e. a commutative monoid) of pos-
sibly different Network components, called nodes in the following. The idea is
straightforward: by suitably “instantiating” the several node types through spe-
cific subsort relationships, we can build a model consisting of arbitrary concrete
components interacting through shared state elements (called places).

A term of sort NetSys is made up of a Network and a State, and describes
a network of connected nodes with a distributed associated state.

In our example, the network nodes use a notion of state matching that of a
Petri net’s marking, that is, a multiset of places compactly represented using the
PBAG{PL ::TRIV} module (the trivial theory TRIV only contains the declaration
of sort Elt). The type-parameter of this module indicates the place label: we will
use places indexed by naturals. Having a flexible place labeling is important, as
we will explain later. The AC operator _+_, which is also marked as a constructor,
provides a description of multisets as weighted sums: For example, the term
3. p(1) + 1. p(2) of sort Pbag (from the module instantiation PBAG{Nat}),
represents a multiset with three occurrences of p1 and one of p2.

The parametrized view S-Pag{PL :: TRIV} is used to instantiate the the-
ory STATE as a multi-set of places via an appropriate mapping. Specifically, the
fundamental element of a state is delineated by the sort ElPbag, which encap-
sulates elementary bags such as 3 . p(1). Using this view, we derive the ADT
of heterogeneous networks that incorporate the distributed state representation
of the marking, as defined in the module NETWORK-MARKING{PL :: TRIV}.

Title Suppressed Due to Excessive Length 7

Listing 1.1. Multiformalism definition: solution 1 1

fth STATE is
sorts State LocState .
subsort LocState < State .
op _+_ : State State −> State [assoc comm] .

endfth

fmod NETWORK{S :: STATE} is
protecting EXT−BOOL .
sorts Network NetSys .
op emptyNetW : −> Network [ctor] .
op _,_ : Network Network −> Network [ctor assoc comm prec 123 id: emptyNetW] .
op _:_ : Network S$State −> NetSys [ctor prec 125] .
op netw : NetSys −> Network .
op state : NetSys −> S$State .
vars N N’ : Network .
var M : S$State .
eq netw((N : M)) = N .
eq state((N : M)) = M .

endfm

view S−Pbag{PL :: TRIV} from STATE to PBAG{PL} is
sort State to Pbag .
sort LocState to ElPbag .

endv

fmod NETWORK−MARKING{PL :: TRIV} is
protecting NETWORK{S−Pbag{PL}} .

endfm

Components used in the case-study Two types of nodes are used: Stochastic Petri
Nets (SPN) and Multi-class Queue Networks (MQN). The functional modules
describing their signature are not included for space reasons. For the former type,
we largely reuse the signature of (rewritable) SPN [7], which is based, in turn,
on that of (rewritable) Place-Transition (PT) nets with inhibitor edges provided
in [5,8]. The SPN formalization includes a small hierarchy of modules available
at https://github.com/lgcapra/rewpt.

SPN The functional module SPN-NODE{PL :: TRIV} describes the SPN nodes:
imports NETWORK-MARKING and the predefined module SPN-SIG (parametrized on
both place and transition labels), using the type parameter PL as an actual pa-
rameter in the imported modules. Importing SPN-SIG with the protecting mode
intuitively means that its initial semantic is retained, while import NETWORK-MARKING
with the extending mode means that the sort Network will be extended with
new data values, without identifying previously defined ones.

SPN transitions (terms of sort Tran) are described through labels linked
to adjacency lists, expressed as Pbag triples [I, O, H]. These labels include a

8 L. Capra, M. Gribaudo

descriptive tag (a String in our example), a Float (the rate parameter of a
negative exponential firing delay) and a Nat (which specifies the firing policy).
For instance, the ground term,

t("a", 1.5, 0) |-> [1 . p(1) + 2 . p(2), 1 . p(1), 2 . p(1)]

delineates a transition characterized by the label "a", an exponential firing rate
µ = 1.5, and an infinite-server type. This transition requires the presence of
precisely one token in place p1 and a minimum of two tokens in place p2 to be
enabled. Upon firing, it will remove two tokens from p2. The PT net underlying
an SPN (a term of sort Net) is straightforwardly defined in a modular way using
the AC juxtaposition ; and the subsort relationship Tran < Net.

Using the predefined firingRate operator, we can define marking-dependent
rates: The current definition is based on the enabling degree (ed(t,m)), which
refers to the occurrences of a transition that are simultaneously enabled in a
marking. Under the infinite server policy (0), the transition exponential rate is
µ · ed(t,m). Under the k-server policy, k > 0, it is µ ·min(ed(t,m), k).

To reuse SPN transitions within a multiformalism framework, it is neces-
sary to encapsulate the SPN signature (referred to as the SPN-SIG module)
in conjunction with the ADT of the network (the NETWORK module) into a new
functional module (SPN-NODE). This module should incorporate the subsort rela-
tionship Tran < Network. Alternatively, the relationship Net < Network could
be established, by which both the expressions (t1 ; t2), t3 and t1, t2, t3
are acknowledged as terms of the Network, although different.

Using this approach, we can add new types of nodes in a standardized way.

Multi-class Queue Networks MQN are straightforwardly built from elementary
queues (representing single severs), that is, terms of sort ElQueue, as defined in
the module EL-QUEUE{PL :: TRIV}. This term comprises a Place and a Float
(the exponential service rate), represented by the notation P @ F.

The MQN signature is defined in module QUEUE{PL :: TRIV} (which in-
cludes the predefined parametrized modules LIST and PBAG in protecting mode).
A simple MQN is a term of sort SimpleQ obtained by juxtaposing a non-empty
list of elementary queues (a term of sort NeList{ElQueue}, obtained by instan-
tiating LIST via a parametrized view) followed by a Place, which represents the
MQN endpoint: the used notation is NeL > P. The general form of an MQN,
identified as a term of sort Queue, consists of a SimpleQ that is prefixed by two
Pbag terms enclosed between []: These multisets represent the queue’s input and
inhibitor conditions relative to the surrounding context. The intuitive subsort
relationship SimpleQ < Queue is established.

With this notation, it is possible to flexibly represent any MQN. For exam-
ple, the SimpleQ term p(1) @ 1.0 p(2) @ 1.5 > p(3) represents a two-class
queue, while the Queue term [2 . p(1), nilP] p(4) @ 2.0 > p(5) denotes a
single-class queue whose enabling requires two tokens in place p(1). The connec-
tion of MQN nodes to a heterogeneous network is simply achieved (analogously
to the SPN nodes) through the parametrized module QUEUE-NODE, which wraps

Title Suppressed Due to Excessive Length 9

the NETWORK-MARKING ADT of nodes using the distributed state notion of mark-
ing and the MQN signature (QUEUE).

Arbitrary combinations can be formed by composing network nodes (,): For
instance, if q1 and q2 are Queue terms with the endpoint of q1 aligning with the
starting place in q2, then q1, q2 simply represents their sequence (note that its
time semantics is different from a single MQN that incorporates q1 and q2).

Node dynamics The behavior of a multiformalism model is characterized by
system modules, each associated with a specific type of node. In our example,
we have the parametrized modules SPN-NODE-SYS and QUEUE-NODE-SYS (listing
1.2): These modules encompass the conditional rewrite rules that specify the
(timed) semantics of the nodes within a network. These rules locally modify
the state (marking) of a SysNet term N : M, which represents a network of
interconnected nodes with an associated multiset of places, due to the occurrence
of an SPN transition or the execution of the service for a client in an MQN,
that either reaches the next server or exits the MQN. Leaving out technical
details, we point out that the free variable rate is bound (through a matching
equation :=) to an expression that accurately defines the time semantics for the
corresponding event. Observe that in the case of an MQN, this depends on the
ratio of clients located at a specific place relative to the total population of the
MQN. This representation facilitates the automated derivation of the CTMC
generator matrix, as detailed in [6].

The following excerpt illustrates the link of a specific node type (SPN) to
the ADT of the network using a standard procedure.

Listing 1.2. Linking a node type to the Network ADT
fmod SPN−NODE{PL :: TRIV} is

extending NETWORK−MARKING{PL} .
protecting SPN−SIG{String, PL} .
subsort Tran < Network .
∗∗∗ subsort Net < Network . ∗∗∗ alternative

endfm

mod SPN−NODE−SYS{PL :: TRIV} is
including SPN−NODE{PL} .
var N : Network . var T : Tran . vars B B’ : Pbag . var K : NzNat . var rate : Float .
crl [spn−t] : (N , T) : B => (N , T) : B’ if enabled(T, B) /\ B’ := firing(T, B) /\

rate := firingRate(T, B) . ∗∗∗ PN firing rule
endm

Case study’s model The encoding of the multiformalism model depicted in Fig-
ure 1 is systematically presented in listing 1.3. The associated system module
(MQN-SPN) comprehensively integrates the two system modules that delineate the
dynamics of the nodes. In addition, it specifies the rules (with labels [Vi > Vj])
that govern the structural transformation of a component of the network (in-
dicated by Vi), depending on the marking of the place p2, as illustrated in the
description of the case study.

10 L. Capra, M. Gribaudo

Listing 1.3. Case study formalization including network reconfiguration

mod MQN−SPN is
inc SPN−NODE−SYS{Nat} .
inc QUEUE−NODE−SYS{Nat} .
var K : NzNat . ∗∗∗ model parameter
vars N N’ N’’ : Network . var S : Pbag .
ops t0 t1 t2 t3 t4 t5 t6 : −> Tran . ∗∗∗ aliases
ops eq1 eq2 eq3 : −> ElQueue . ∗∗∗ aliases
eq eq1 = p(7) @ 1.0 . ∗∗∗ conditioned single−class queue
eq eq2 = p(1) @ 1.5 .
eq eq3 = p(6) @ 2.5 .
ops q1 q2 q3 q23 : −> Queue . ∗∗∗ aliases
eq q1 = [1 . p(5), nilP] eq1 > p(0) .
eq q2 = [2 . p(2), nilP] eq2 > p(6) .
eq q3 = [2 . p(2), nilP] eq3 > p(0) .
eq q23 = [1 . p(2), nilP] ql(q2) ql(q3) > out(q3) . ∗∗∗ MQN alias
op network : −> Network . ∗∗∗ alias
op netsys : NzNat −> NetSys . ∗∗∗ alias
eq t0 = t("start", 1.0, 1) |−> [1 . p(0), 1 . p(1), nilP] .
eq t1 = t("switch1", 0.5, 1) |−> [1 . p(3), 1 . p(2), nilP] .
eq t2 = t("switch2", 0.05, 1) |−> [1 . p(2), 1 . p(3), nilP] .
eq t3 = t("on", 2.0, 1) |−> [1 . p(4), 1 . p(5), nilP] .
eq t4 = t("off", 1.0, 1) |−> [1 . p(5), 1 . p(4), nilP] .
eq t5 = t("rem1", 1.0, 1) |−> [1 . p(1), 1 . p(7), nilP] .
eq t6 = t("rem6", 1.5, 1) |−> [1 . p(6), 1 . p(7), nilP] .
op V : NzNat −> [Network] [memo] . ∗∗∗ variable component (depends on p(2))
eq V(2) = q2 , q3 , t5 , t6 . ∗∗∗ sequential composition: "out" of q2 is "in" for q3
eq V(1) = q23 , t6 . ∗∗∗ hybrid component (MQN + tran)
eq V(0) = p(eq2) @ 0.0 p(eq3) @ 0.0 > out(q3) . ∗∗∗ "dead" queue
eq network = t0 , t1 , t2 , t3 , t4 , t5 , t6 , q1 , V(2) .
eq netsys(K) = network : K . p(0) + 2 . p(2) + 1 . p(5) .
∗∗∗ network rewriting
crl [V2>V1] : N : S => N’ , V(1) : S if S[p(2)] = 1 /\ N’’ , N’ := N /\ N’’ = V(2) .
crl [V2>V0] : N : S => N’ , V(0) : S if S[p(2)] = 0 /\ N’’ , N’ := N /\ N’’ = V(2) .
crl [V1>V2] : N : S => N’ , V(2) : S if S[p(2)] = 2 /\ N’’ , N’ := N /\ N’’ = V(1) .
crl [V1>V0] : N : S => N’ , V(0) : S if S[p(2)] = 0 /\ N’’ , N’ := N /\ N’’ = V(1) .
crl [V0>V2] : N : S => N’ , V(2) : S if S[p(2)] = 2 /\ N’’ , N’ := N /\ N’’ = V(0) .

endm

For example, the rule with the label V2 > V1 denotes the replacement of
component V2 with V1 when p2 has one token. This methodology represents a
conventional approach to construct a multiformalism model composed of various
types of reconfigurable components.

Rewrite rules must exhibit coherence with equations and pattern-matching
modulo A, as elucidated at the conclusion of section 5. Given that the Maude
rewriting engine operates under the assumption of coherence without verifica-
tion, meticulous attention is necessary. For instance, the rudimentary formula-
tion of the rule [V 2 > V 1] is inadequate.

crl [V2>V1] : N , V(2) : S => N , V(1) : S if S[p(2)] = 1 .

Title Suppressed Due to Excessive Length 11

In accordance with the coherence assumption, the equation corresponding
to the term V(2) (utilized as an alias) is anticipated to be applied initially.
Consequently, this results in the right-hand side of the rewrite rules remaining
unmatched. A detailed discussion of this important topic is beyond the scope of
this paper. Under the executability assumption in the equational theory E ∪A,
coherence in the multiformalism framework is ensured if rules’ right-hand sides
use only variables and constructors (possibly non-free) at each level.

Solution 2 We propose an alternative framework for multiformalism modeling
in Maude. The objective is to improve the characterization of the nodes within
a heterogeneous network, thus facilitating the modeler’s efforts. Conceptually,
these nodes are interconnected through a shared notion of distributed state,
and they possess an intrinsic semantics that induces local state transformations.
Implicit in the previous formalization, this concept is now made explicit and
encapsulated in the theory NODE, subsequently extending the theory STATE.

The leading element of the theory NODE is an operator, denoted next, which
encapsulates the reachability relationship between the internal states of a node.
The sort StateRate, equipped with appropriate getters, constitutes a pair com-
prising a reachable state and a floating-point number: hence, given a node along-
side its current state, this operator yields a multiset that represents the potential
one-step transitions from the node’s current state to novel local states, along with
the associated rates. This multiset is aligned with the sort StatesRates, custom-
arily defined as a free commutative monoid. In essence, this operator represents
the potentially non-deterministic firing rule operative for each network node. A
nuanced justification for employing a multiset instead of a set arises from the
potential existence of multiple transitions from a singular source state to an iden-
tical target, a factor that, as expounded in [7,6], must be properly considered to
precisely calculate the stochastic matrix of a model. It should be noted that this
methodology may be readily extended to account for structural reconfigurations
of nodes, for example, by utilizing multisets of triplets to represent the novel
configurations (comprising node and state) alongside their transition rates.

The module NETWORK-SIG, which resembles NETWORK{S :: STATE} as pre-
sented in Solution 1, delineates the abstract signature of the network. The
difference is that it is not parameterized and introduces the State sort. The
functional module NETWORK-NODE{N :: NODE}, which imports NETWORK-SIG in
a protecting mode, syntactically associates a family of nodes of a specified
type with the network through the subsort relationship N$State < State and
N$Node < Network{N} < Network. Some operator overloading facilitates the
recognition of homogeneous (sub)networks.

The system module NETWORK-SYS{N :: NODE} includes NETWORK-NODE{N}
and defines in a systematic way the rewrite rule that encodes inner state tran-
sitions using the operator next required by the theory NODE. The remaining
part, which depends on the specific model, is available at (https://github.
com/lgcapra/rewpt/tree/main/multiformalism/NETWORK-2.maude).

12 L. Capra, M. Gribaudo

This part covers the implementation of a multiset of state transitions, inclu-
sive of their respective rates, along with two functional modules corresponding
to each node type: SPN-SIG+ and QUEUE+. These modules are parameterized
with respect to the node labels and import the signatures of SPN and MQN,
respectively, under a modality protecting. Each module provides a definition of
the next operator. The implementation for MQN demonstrates non-determinism
because many local-state transitions may occur within a given MQN.

The system module that formalizes the case study is analogous to the one in
listing 1.3, except for the integration of two instances of NETWORK-SYS{N :: NODE}
through two parametrized views that link the parameter N to SPN-SIG+ and
QUEUE+, respectively.

Listing 1.4. Multiformalism definition: solution 2
fth NODE is

inc STATE . ∗∗∗ includes another theory
pr FLOAT .
sort Node .
sort StateRate . ∗∗∗ a pair (state,rate)
sort StatesRates . ∗∗∗ multiset of pairs (state,rate)
subsort StateRate < StatesRates .
op state : StateRate −> State .
op rate : StateRate −> Float .
op empty : −> StatesRates .
op __ : StatesRates StatesRates −> StatesRates [assoc comm id: empty] .
op next : Node State −> StatesRates . ∗∗∗ encodes the firing rule

endfth

fmod NETWORK−SIG is
sorts Network State NetSys .
op emptyNetW : −> Network [ctor] .
op _,_ : Network Network −> Network [ctor assoc comm prec 123 id: emptyNetW] .
op _:_ : Network State −> NetSys [ctor prec 125] .
op netw : NetSys −> Network .
op state : NetSys −> State .
var N : Network . var M : State .
eq netw((N : M)) = N .
eq state((N : M)) = M .

endfm

fmod NETWORK−NODE{N :: NODE} is
pr NETWORK−SIG .
sorts Network{N} NetSys{N} .
subsort N$Node < Network{N} < Network .
subsort N$State < State .
subsort NetSys{N} < NetSys .
op _,_ : Network{N} Network{N} −> Network{N} [ctor ditto] . ∗∗∗ overloading
op _:_ : Network{N} N$State −> NetSys{N} [ctor ditto] .

endfm

Title Suppressed Due to Excessive Length 13

mod NETWORK−SYS{N :: NODE} is
inc NETWORK−NODE{N} .
var N : N$Node . vars M M’ : N$State . var SR : N$StateRate .
var SRs : N$StatesRates . var NW : Network . var R : Float .
crl [firing−rule] : (N, NW) : M => (N, NW) : M’ if SR SRs := next(N, M) /\ M’ :=

state(SR) /\ R := rate(SR) .
endm

5.2 Remarks on the use of Maude as a multiformalism framework

It can be posited that the integration of multiformalism modeling within a unified
framework such as Maude may fundamentally contradict the inherent principles
of the multiformalism paradigm, thus reducing its inherent advantages. However,
Maude has been employed as a logical framework that accommodates a variety of
formalisms and models, ranging from distinct classes of PN to CCS, CSP, BPM,
UML dynamic diagrams and queue networks, among others, while preserving
their unique characteristics. Our objective is to utilize Maude as a formal ecosys-
tem where these diverse models interact through a specific protocol (a kind of
distributed shared memory), operating under semantics grounded in rewriting.

It is pertinent to highlight three significant aspects: within the case study,
the shared state is constituted by a multiset of places, synonymous with integer
variables. However, the theory underlying the state definition permits alterna-
tive representations, such as the implementation of continuous state variables
as done in hybrid Petri nets. Each node within the heterogeneous network may
possess an internal (or private) state segment, which is subject to transformation
via appropriate local rewrites that can be effectively encoded utilizing Maude. Fi-
nally, the inherent modular design supports the potential for scaling complexity
by allowing individual analysis and subsequent replacement (through rewriting)
of network components, or sub-models, with suitable stochastic approximations.
For example, under specific circumstances, PT transitions might be combined,
or an MQN could be simplified to a basic queue structure.

6 Experimental evidence

Table 1 presents some experimental results related to the Maude encoding of
the case study. They refer to the transition system (TS) generated by the para-
metric alias netsys(N) for increasing values of N (the initial population of the
network). For example, the following command – which has no solutions for any
N– searches for final states throughout the TS. Using slightly different shapes of
the command, we can check other base properties, e.g. preservation of the pop-
ulation in the system. Note that actual performance measurement (e.g., system
response time) has not been reported since it depends only on the parameters
of the model, and their computation time is independent of the actual values
provided. As an illustrative example, we report system throughput in the last
column (assuming that all structural reconfigurations have a rate of 0.05; we

14 L. Capra, M. Gribaudo

solved the ergodic CTMC isomorphic to TS, derived using the approach defined
in [6]). Instead, the table shows the relative scalability of the proposed approach,
highlighting that relatively large systems can be analyzed in a few dozens or hun-
dreds of seconds on a conventional laptop equipped with an 11th-Gen Core i5
and 32 GB RAM. Noticeably, solution 2 shows better performance as N grows,
likely due to the different encoding of inner node state transitions (more frequent
than rewrites due to structural changes).

Maude> search in MQN-SPN : netsys(N) =>! F:NetSys .

Table 1. Transition System build of the case-study

N # states build time Sol 1 (sec) build time Sol 2 (sec) Thr (jobs/sec)
10 5.148 2 2 2,3
20 31.878 19 18 4,1
30 98.208 33 31 6,1
40 222.138 43 38 10,7
50 421.668 56 47 14,4
60 714.798 73 68 19,8
70 1.119.528 318 240 24,8
80 1.653.858 1.480 1.162 29,7
90 2.335.778 3.429 2.924 35,5
100 3.183.318 5.290 4.065 39,2

7 Conclusions

We have presented a multiformalism modeling framework for reconfigurable or
adaptive distributed systems integrally realized using the Maude system. The
case study discussed illustrates the practical benefits of this approach, showing
improved modeling flexibility, modularity, and computational efficiency.

Ongoing research is proceeding along two primary trajectories: In the short
to medium term, our objective is to incorporate the Maude rewrite engine into the
SIMTHESys multiformalism framework, which should substantially augment the
modeling capacities of the framework. Within SIMTHESys, Maude should serve
as a solution engine operating on the structural aspects of the model during
the solution phase, thus facilitating the dynamic reconfiguration of the model
at solution time. This capability would allow for the introduction of new fea-
tures without necessitating a redesign of either the conceptual framework or the
SIMTHESysER solvers generation tool.

Simultaneously, we aim to extend the Maude multiformalism framework by
integrating compositional operators that highlight network symmetries (auto-
morphisms in colored "hierarchical" graphs) with the objective of deriving a
quotient transition system, which is isomorphic to a lumped Markov process,
similar to the methodology presented in [8] for rewritable SPN.

Title Suppressed Due to Excessive Length 15

References

1. Barbierato, E., Gribaudo, M., Iacono, M.: Modeling hybrid systems in SIM-
THESys. Electronic Notes in Theoretical Computer Science 327, 5 – 25 (2016).
https://doi.org/10.1016/j.entcs.2016.09.021

2. Barbierato, E., Gribaudo, M., Iacono, M., Jakóbik, A.: Exploiting
CloudSim in a multiformalism modeling approach for cloud based sys-
tems. Simulation Modelling Practice and Theory 93, 133 – 147 (2019).
https://doi.org/10.1016/j.simpat.2018.09.018

3. Bause, F., Buchholz, P., Kemper, P.: A toolbox for functional and quantitative
analysis of deds. In: Proceedings of the 10th International Conference on Computer
Performance Evaluation: Modelling Techniques and Tools. pp. 356–359. TOOLS
’98, Springer-Verlag, London, UK (1998)

4. Bruni, R., Meseguer, J.: Generalized rewrite theories. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) Automata, Languages
and Programming. pp. 252–266. Springer-Verlag, Berlin, Heidelberg (2003).
https://doi.org/10.1007/3-540-45061-0_22

5. Capra, L.: Rewriting logic and Petri nets: A natural model for reconfigurable dis-
tributed systems. In: Bapi, R., Kulkarni, S., Mohalik, S., Peri, S. (eds.) Distributed
Computing and Intelligent Technology. pp. 140–156. Springer International Pub.,
Cham (2022). https://doi.org/10.1007/978-3-030-94876-4_9

6. Capra, L.: Associating a Markov process with Maude executable modules. In: Pro-
ceedings of the 15th International Conference on Simulation and Modeling Method-
ologies, Technologies and Applications. pp. 106–116. SciTePress (2025)

7. Capra, L., Gribaudo, M.: A lumped CTMC for modular rewritable PN. In: Doncel,
J., Remke, A., Pompeo, D.D. (eds.) Computer Performance Engineering - 20th
European Workshop, EPEW 2024, Venice, Italy, June 14, 2024, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 15454, pp. 106–120. Springer
(2024). https://doi.org/10.1007/978-3-031-80932-3_8

8. Capra, L., Köhler-Bußmeier, M.: Modular rewritable Petri nets: An efficient
model for dynamic distributed systems. Theoretical Computer Science 990, 114397
(2024). https://doi.org/https://doi.org/10.1016/j.tcs.2024.114397

9. Ciardo, G., Miner, A.S.: SMART: The stochastic model checking analyzer for reli-
ability and timing. Quantitative Evaluation of Systems, International Conference
on 0, 338–339 (2004)

10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Oliet, N.M., Meseguer, J., Talcott, C.:
All About Maude - A High-Performance Logical Framework: How to Specify, Pro-
gram, and Verify Systems in Rewriting Logic. Lecture Notes in Computer Science,
Springer (July 2007). https://doi.org/10.1007/978-3-540-71999-1

11. Deavours, D.D., Clark, G., Courtney, T., Daly, D., Derisavi, S., Doyle, J.M.,
Sanders, W.H., Webster, P.G.: The Möbius framework and its implementation
(2002)

12. Franceschinis, G., Gribaudo, M., Iacono, M., Mazzocca, N., Vittorini, V.:
Drawnet++: Model objects to support performance analysis and simulation of
systems. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 2324 LNCS, 233 –
238 (2002). https://doi.org/10.1007/3-540-46029-2_18

13. Gribaudo, M., Iacono, M.: Theory and application of multi-formalism modeling
(2013). https://doi.org/10.4018/978-1-4666-4659-9

16 L. Capra, M. Gribaudo

14. Iacono, M., Gribaudo, M.: Element based semantics in multi formalism perfor-
mance models. p. 413 – 416 (2010). https://doi.org/10.1109/MASCOTS.2010.54

15. de Lara, J., Vangheluwe, H.: Atom3: A tool for multi-formalism and meta-
modelling. In: Kutsche, R.D., Weber, H. (eds.) FASE. Lecture Notes in Computer
Science, vol. 2306, pp. 174–188. Springer (2002)

16. Sanders, W.: Integrated frameworks for multi-level and multi-formalism modeling.
In: Petri Nets and Performance Models, 1999. Proceedings. The 8th International
Workshop on. pp. 2–9 (1999). https://doi.org/10.1109/PNPM.1999.796527

17. Trivedi, K.S.: Sharpe 2002: Symbolic hierarchical automated reliability and perfor-
mance evaluator. In: DSN ’02: Proceedings of the 2002 International Conference on
Dependable Systems and Networks. p. 544. IEEE Computer Society, Washington,
DC, USA (2002)

A HASKELL encoding for reconfigurable timed
systems

Antonio César Castro Iglesias1[0000−0002−8531−6535], Alexandre
Madeira1,2[0000−0002−0646−2017], and Manuel Martins1,2[0000−0002−5109−8066]

1 University of Aveiro
2 CIDMA - Research Center in Mathematics and Applications

Abstract. We introduce a HASKELL implementation of Reconfigurable
Timed Automata (ReTA), providing an interactive interface that guides
users in constructing such models by specifying locations, invariants,
transitions, guards, resets, hyper-edges and also allowing for the con-
struction of composed ReTA that can operate together via shared-actions.
The tool automatically generates the initial configuration of the de-
fined systems, simulates discrete and delay actions, checks invariance and
guard conditions, updates clocks and executes the activating/deactivating
effects of the hyper-edges. Also, this encoding allows the users to define
traces that record both successful and failed actions, supporting detailed
behavioral analysis. As a case study, we introduce a supply chain mech-
anism, that can be managed by one or two workers, allowing for the
definition of composed systems that interact between each other.

Keywords: Reconfigurable Timed Automata · HASKELL · System mod-
eling.

1 Introduction

The increasingly complex behavior of time-dependent systems push the limits
of traditional state-based modeling. For that, ReTA automata try to extend the
classical notions of such timed systems [1] with the capabilities of reconfigurable
systems [3]. For the analysis of such systems, the need of suitable tools emerge,
as well known modal checkers such as Uppaal [2] or Romeo [4] are not yet suited
with the capabilities for a direct analysis of these novel structures. In this work
we present a HASKELL [5] encoding of ReTA. Our implementation guides the user
through an incremental construction of ReTA models, generating configurations,
simulating both discrete and delay actions and managing hyper-edge timers for
dynamic activation and deactivation of transitions. This interactive environment
not only makes ReTA accessible for experimentation but also lays the groundwork
for future integration with temporal modal logics and other model checking
formalisms. As the cornerstone of this encoding, we first present the formal
definition of ReTA.

Definition 1. A multi-actions Timed Reconfigurable Automata - (ReTA) is a
tuple M = (S,X,Act, E,↠T , T , Inv,R, α0, s0) where:

2 Antonio César Castro Iglesias, Alexandre Madeira, and Manuel Martins

– S is the set of locations.
– Act is the set of actions.
– X is the set of clocks.
– E ⊆ S × CC(X)×Act× 2X × S is the set of ground edges.
– T ⊆ H(E) is the set of deactivation edges and ↠T⊆ H(E) is the set of acti-

vating edges. The set of hyper-level edges is given by the disjoint union H =↠T

⊎ T

– Inv : S → CC(X) is the invariant assignment function to states
– R : H → N≥0 is the times assignment function to hyper-edges

– the initial active timed transitions α0 = (αE
0 , α

↠
0 , α0), where αE

0 ⊆ E, α↠
0 ⊆↠

and α0 ⊆ are the sets of initial active ground edges, activation and deactiva-
tion arrows, respectively; and s0 is the initial location of the system.

The intuition behind this structure is based on the homogenization of the for-
malisms of timed automata together with the reconfigurable elements of reactive
graphs, where an additional layer of complexity is introduced by incorporating
the concept of time-consuming actions or actions that take time, implemented
as timers on the hyper-edge transitions as portrayed in Fig.1. These timers be-
gin their countdown once their associated ground edge is traversed, creating
a temporal dependency in the new reconfiguration of our timed reconfigurable
automaton, since, once the timer duration has elapsed, a reconfiguration effect
will be triggered through the activation or deactivation of the target edge of the
hyperedge whose countdown has reached zero.

2 Case Study

We present a case study on assembly lines of a factory to illustrate the func-
tionalities of ReTA transitions and their reproducibility in HASKELL. Assembly
lines create dependencies among products and production stages, activating or
deactivating lines as requirements are met. We define a single line to show the
temporal and reactive process, later extended into interleaved cases, where one
operator manages two lines or two operators run them concurrently. Finally, we
show intrusive processes, where one line remains inactive until triggered by the
completion of another.

Single line process: Consider now the process portrayed in Fig.1a. Consider
the clock x, that will regulate the temporal behavior of the system. The produc-
tion line operates as follows. The process begins with an empty machine (Empty
line A location) that requires a worker to become active (occupy_A action).
As expected, production cannot start without an operator. Once the machine
is occupied, the worker takes some time to activate it (Idle_A location). After
activation (prod_A action), the machine enters the production phase (Produc-
ing_A location), which continues for a limited duration defined by the location
invariant, that represents the machine maximum operating capacity. When the
system transitions back to the idle state (reset_A action), the machine must
undergo a cool-down period. During this time, production is temporarily halted.

A HASKELL encoding for reconfigurable timed systems 3

Only after the cool-down time has elapsed can the machine be reactivated and
resume its operation.

(a) Single machine definition (b) Supply chain with two workers

(c) Supply chain with one worker
(d) Intrusive communication between
machines

Fig. 1: Supply chain configurations: (a) single machine, (b) two workers, (c) one
worker, and (d) intrusive communication.

The definition of ReTA in HASKELL is carried out in five phases where the
program will prompt the user with a series of questions to define all the compo-
nents of the system.
1. Define if the system is composed by one or more ReTA.
2. Define system clocks by specifying their names.
3. Define the number of locations, the names of those locations, the clock con-

ditions, their comparison operators (≤, ≥,. . .), and the integer values for the
comparisons.

4. Define the system edges similarly to the locations. Specify the source and
destination locations for each edge, assign the time guard, indicate whether
the edge is active or inactive, and provide the name of the action that triggers
the transition.

5. Define the hyper-edges by specifying the source ReTA and the target ReTA.
Note that hyper-edges within the same ReTA are referenced as both the
source and target. Define the hyper-edges names and an associated timer.

To show the functionalities of the HASKELL encoding, we first consider the
system in Fig.1a and we will reproduce its possible behaviors using our code.
Finally we also present the final trace of action 2b for our system after a series
of alternating discrete and delay actions. Note that this encoding also has the
capacity of detecting possible fails of the system by means of invariant violation,
impossible transitions due to guard violations and non-active transitions.

4 Antonio César Castro Iglesias, Alexandre Madeira, and Manuel Martins

Double line process: In this subsection we introduce an exemplification
of a supply chain with two production lines. Fig.1b, Fig.1c and Fig.1d portray
two process, one operated with two workers (parallel) and the other one oper-
ated with just one worker (hand-shaking). Finally we illustrate in Fig.1d the
intrusive process, where one of the lines remains inactive until the previous one
completes a certain process. In the new example, chain B operates like chain A:
a worker activates the machine and starts production. Different invariants and
hyper-edge durations reflect machine-specific activation, cooling, and reactiva-
tion times. To begin, a delay of 1–2 time units ensures guards on x and y are
met and invariants are respected. The system can then move to either IdleA or
IdleB . Afterward, product A can start after 3 time units, while B starts after
5–7, depending on timing constraints. The next step illustrates the behavior of
the dual-chain system when both machines are operated by a single worker. In
this case, we introduce a shared action occupy, representing that both machines
are managed by the same operator. Unlike the independent case, this shared
action is synchronized and causes a simultaneous transition in the locations of
both chains A and B. Fig. 3 shows the shared-actions process on the first dis-
crete transition of the system, where the occupy action moves both ReTA to the
IdleA and IdleB locations. To further illustrate the system 1 evolution, Fig. 3
provides a trace of mixed actions (delay, shared-actions, and parallel).

Intrusive communication: Intrusive communication extends this model
by creating dependencies between production lines. In this case, production in
line B cannot begin until certain conditions in line A are satisfied. Specifically,
the initial transition occupyB remains inactive until line A completes production
or supplies enough output. Once this occurs, an intrusive transition from A
activates B, effectively "calling" a new operator to start its production, while A
continues operating normally. This mechanism can be scaled to multiple lines,
supporting both sequential and parallel flows, as shown in Fig. 1d. The HASKELL
output in Fig. 4 further illustrates this, where the hyper-edge HE2 generated in
line A activates Edge4 from line B after a delay of three time units.

3 Conclusions and future work

We aim to extend the theoretical elements of ReTA by defining suitable modal
temporal logics, the definition of bisimulation principles and modal checking
techniques. To follow such theoretical advancements we seekto extend the en-
coding with advanced compositional operators and automated property check-
ing, including the integration of simulation and bisimulation analysis. Finally,
the implementation of this encoding into MARGE [6] analysis tool is another
main task, offering a complete environment for model construction, verifica-
tion, and performance evaluation of ReTA models. For reproducibility and re-
search purposes the HASKELL model is available at the Gitlab repository https:
//gitlab.com/antonio.iglesias13/haskell_reta_encoding.

A HASKELL encoding for reconfigurable timed systems 5

References

1. Alur, R., Dill, D.L.: The theory of timed automata. In: de Bakker, J.W., et al. (eds.)
Real-Time: Theory in Practice, REX Workshop, Lecture Notes in Computer Sci-
ence, vol. 600, pp. 45–73. Springer (1991). https://doi.org/10.1007/BFb0031987,
https://doi.org/10.1007/BFb0031987

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: For-
mal Methods for the Design of Real-Time Systems, pp. 200–236. Springer
(2004). https://doi.org/10.1007/978-3-540-30080-9_7, https://doi.org/10.
1007/978-3-540-30080-9_7

3. Gabbay, D.M.: Introducing reactive kripke semantics and arc accessibility. In:
Avron, A., et al. (eds.) Pillars of Computer Science, pp. 292–341. Springer
(2008). https://doi.org/10.1007/978-3-540-78127-1_17, https://doi.org/10.
1007/978-3-540-78127-1_17

4. Gardey, G., Lime, D., Magnin, M., Roux, O.: Romeo: A tool for analyzing time
petri nets. In: International Conference on Computer Aided Verification. pp. 418–
423. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/11513988_41,
https://doi.org/10.1007/11513988_41

5. Hudak, P., Fasel, J.H.: A gentle introduction to haskell. ACM SIGPLAN Notices
27(5), 1–52 (1992). https://doi.org/10.1145/130697.130698, https://doi.org/
10.1145/130697.130698

6. Tinoco, D., Madeira, A., Martins, M.A., Proença, J.: Reactive graphs in ac-
tion. In: Marmsoler, D., Sun, M. (eds.) FACS 2024, Lecture Notes in Com-
puter Science, vol. 15189, pp. 97–105. Springer (2024). https://doi.org/10.1007/
978-3-031-71261-6_6, https://doi.org/10.1007/978-3-031-71261-6_6

A Appendix (HASKELL runs)

(a) Initial configuration | After first discrete transition and 1-unit delay | After hyper-
edge effects

(b) Trace of actions for system Fig. 1a

Fig. 2: System evolution and action trace. (a) Some possible configurations; (b)
Trace of actions.

6 Antonio César Castro Iglesias, Alexandre Madeira, and Manuel Martins

Fig. 3: Shared-actions trace and parallel run trace

Fig. 4: Intrusive effects in HASKELL

Reasoning about blurred observations of
program states: A recipe

Manisha Jain1,2, Alexandre Madeira2, and Lúıs S. Barbosa3

1 INL, Portugal
2 CIDMA, Dep. Mathematics, Aveiro University, Portugal

3 HasLab INESC TEC, Dep. Informatics, Minho University, Portugal

Abstract. This short paper presents a simple method to handle fuzzy
perceptions, or observations, in the analysis of transition systems and
how a modal logic should be fuzzified to handle fuzzy perception. The
’recipe’ is illustrated by its application to two cases, The second one,
involving quantum programs, may be particularly relevant for the near
future.

1 Introduction

What if, when reasoning about a program, the perception of what is the cur-
rent state is somehow blurred? I.e., what if one cannot assume to be in a defi-
nite execution point, but resort instead to a probability distribution or to some
sort of weighted vector of computational states? This may come from different
phenomena, for example, limited information provided by sensors, in a hybrid
program, lack of deterministic control over large learning sets, or when the no-
tion of a state abstracts from data exchanged through multiple interactions in
a distributed setting. In the specific case of quantum computing [9] uncertainty
is not an oddity, but a crucial part of the game. Actually, not only the result of
measuring a quantum state is always probabilistic, but also decoherence further
blurs the way the quantum state may evolve or simply be observed.

Fuzzy sets and their theory [11, 5] provides a classical, standard response
to model uncertainty. However, in the engineering of programming an extra
mile is required to systematically introduce fuzziness in whatever logic program
properties are stated and reasoned about. This short paper proposes a very
simple, but effective way to fuzzify a particular program logic, starting from
what we call a fuzzy perception of the underlying state space. This propagates to
underlying transition system, and even to the way properties are formulated and
verified inside the logic, i.e. to the very notion of logic satisfaction. The whole
process, named fuzzification in the sequel, is illustrated with a couple of different
program logics.

After recalling a few elementary concepts, in particular that of a residuated
lattice which provides the truth space for fuzzified logics, the general method is
described in Section 2. The whole approach is then instantiated in Section 3 to
a few program logics, namely the standard Dynamic Logic [6], and a quantum
variant [2, 1].

2 Fuzzifying a modal logic

Our starting point is to define a truth space for the resulting logic, based on
a residuated lattice A = ⟨A,⊓,⊔, 1, 0,⊙,⇀, e⟩ over a nonempty set A, i.e. a
complete lattice ⟨A,⊓,⊔⟩, equipped with a monoid ⟨A,⊙, e⟩ such that ⊙ has a
right adjoint, ⇀, the residuum. Requiring that the lattice meet (⊓) and monoidal
composition (⊙) coincide, and enforcing to 1 = e, allows the adjunction to be
written as a⊓b ≤ c iff b ≤ a ⇀ c. Finally, a pre-linearity condition ((a ⇀ b)⊔(b ⇀
a) = 1) is enforced, opening a wide spectrum of alternative semantics. Examples
include Boolean algebras, and the Gödel lattice GGG = ⟨[0, 1],min,max, 1, 0,→⟩,
with implication defined as a → b = 1 (if a ≤ b) or b otherwise. We can now
move to the description of the ’fuzzyfication’ procedure.

Fuzzifying models. The starting point is a transition system T = (W,R)
over a set Act of (atomic) actions, where W is a set of states and R = (Ra ⊆
W ×W)a∈Act a family of accessibility relations that interprets Act. Additionally,
given a set of propositions Prop one may also consider a valuation V : Prop ×
W → {0, 1} that assigns propositions to states, and write w |= p to abbreviate
V (p, w) = 1.

Given a residuated lattice A we define an A- observation of T as F (T) =
(F (W), F (R)) where F (W) = AW is a set of fuzzy states, encoding a fuzzy
perception of the system states, and F (R) = (F (Ra) ⊆ F (W) × F (W))a∈Act

denotes the corresponding accessibility relation, where, for each ρ ⊆W ×W ,

F (ρ) = {(σ, σ(w,v)) | σ ∈ F (W), (w, v) ∈ ρ, σ(w) ̸= 0} (1)

and

σ(w,v)(u) =





σ(u), u ̸∈ {w, v}
σ(w), u = v

0, u = w and u ̸= v

(2)

The intuition behind this definition is the following. States are now percep-
tions of the original states, mapping each of the later to a value in A, and the
corresponding accessibility relation leads from a perception σ to another one
σ(w,v), for each original transition from w to v. What is the value of a state u in
this new perception σ(w,v)? If u is not involved in the original transition, i.e. it is
not w nor v, the value remains unchanged (i.e. remains as it was in σ). If, on the
other hand, u is the target state in (the original) transition, i.e. u = v, its value
becomes the value in σ of the source state in that transition, i.e. w. This means
that the value of w in σ is propagated to the new perception to become there
the value of u. If, as final case, u is the source state (i.e. u = w) in the original
transition leading to a state different from u, clearly u is no more a state that can
be possibly part of the new perception, thus taking in σ(w,v) the bottom value
in the underlying residuated lattice. Note that the actual behaviour of fuzzified
models is fully determined by the underlying transition structure (W,R). The
introduction of fuzziness impacts only on the perceptions.

To illustrate this construction, consider T = (W,R) over Act = {a}, where
W = {s, w, v} and Ra = {(w, s), (w, v), (s, v)}. Instantiating the semantics with
the Gödel lattice GGG, assume the following ’perception of the current state’: σ :
{s, w, v} → [0, 1] such that σ(s) = 0.4, σ(w) = 0.3 and σ(v) = 0 (in a shorter
notation we simply write σ = {s0.4, w0.3}). In this case, from σ, we have three
possible transitions F (Ra) = {(σ, σ(s,v)), (σ, σ(w,s)), (σ, σ(w,v))}, where

σ(s,v) = {v0.4, w0.3}, σ(w,s) = {s0.3} and σ(w,v) = {s0.4, v0.3}. (3)

Fuzzifying satisfaction Consider, now, the following quite standard proposi-
tional dynamic logic over a signature (Prop,Act), denoted by Fm, for Prop a set
of atomic propositions and Act a set of atomic actions:

φ ::= ⊥ | p | φ ∧ φ | ¬φ | [π]φ, p ∈ Prop (4)

π ::= a | π;π | π + π | p?, a ∈ Act (5)

with π;π′ meaning the sequential composition of the execution of π by the ex-
ecution of π′; the choice operator π + π′ meaning that the execution can do
either π or π′, and the iteration operator π∗ meaning that the program repeats
π zero or more times. Finally, we have the test operator p? that is a program
that pursues the execution if the formula p is true there, or abort, if not.

Hence, for a given semantics A, the A-satisfaction is the function |=F : F (W)×
Fm → A, where

– (σ |=F ⊥) = 0

– (σ |=F p) =
⊔

w∈W (σ(w) ⊓ V (w, p))

– (σ |=F φ ∧ φ′) = (σ |=F φ) ⊓ (σ |=F φ′)
– (σ |=F [π]φ) =

d
σ′∈F (W)((σ, σ

′) ∈ F (R̂π)⇀ (σ′ |=F φ))

with R̂π, the standard interpretation of programs, recursively defined as fol-
lows: R̂a = Ra, a ∈ Act; R̂π;π′ = R̂π · R̂π′ , where · is the relational composition;

R̂π+π′ = R̂π ∪ R̂π′ ; R̂π∗ =
⋃
k≥0 R̂

k
π, where R̂0

π = id and R̂k+1
π = R̂π · R̂kπ; and

R̂p? = {(w,w) | V (w, p) = 1}.

If the perception of what counts as the current state is somehow blurred, as
assumed here, the result of evaluating a formula in such a state follows a similar
principle. This means that the validity of a proposition evaluated in what is
perceived as the current state with a specific degree of certainty is weighted by
this same degree. Of course in the absence of uncertainty in the perception of
the current state, the evaluation becomes entirely defined and the satisfaction
relation becomes de standard one.

This procedure is then extended to any formula built from connectives defined
over A, and to the interpretation of modalities where the universal quantifica-
tion over accessible states is given by the generalization of the infimum of A to
arbitrary sets. Note that fuzziness in the interpretation of a program π comes

from the application of F to its standard interpretation given by R̂π. As previ-
ously observed, the actual behaviour of a program is crisp; the ‘locus’ of fuzziness
are states themselves, as they are perceived as states only up to a uncertainty
degree. For illustration purposes, consider σ = {s0.4, w0.3}, and compute

(σ |=F [a]⊤) =
l

σ′∈F (W)

((σ, σ
′
) ∈ F (Ra) ⇀ (σ

′ |=F ⊤))

= (σ
(s,v) |=F ⊤) ⊓ (σ

(w,s) |=F ⊤) ⊓ (σ
(w,v) |=F ⊤)

=
(⊔

w∈W
(σ

(s,v)
(w) ⊓ (w |= ⊤))

)
⊓

(⊔

w∈W
(σ

(w,s)
(w) ⊓ (w |= ⊤))

)

⊓
(⊔

w∈W
(σ

(w,v)
(w) ⊓ (w |= ⊤))

)
= 0.3

3 Two further examples

3.1 A-perceptions in the execution of imperative programs

The same construction can be applied to the analysis of a myriad of program-
ming paradigms. Reasoning about imperative programs assuming some level of
uncertainty on states observations, provides a first scenario worth to consider.
Note that the source of uncertainty can very simply be malfunctions in real de-
vices [10]. Let us revisit the methods introduced in the previous section over
a dynamic logic DL [6]. Recall that states in a model for DL are valuations of
variables V ar over the natural numbers, i.e. W = NV ar. Then, programs are
specified in the language (5) with actions taken as assignments and propositions
understood as equalities and inequalities over numeric expressions (c.f. [6]).

Therefore, consider Act = {x := exp | x ∈ V ar and exp ∈ AExp}, with
AExp ∋ exp ::= x | n | exp + exp | exp − exp | exp ∗ exp, x ∈ V ar and n ∈ Z
and Prop ∋ p ::= exp = exp | exp < exp | ¬p | p ∧ p. Clearly, any standard
imperative command (e.g. if p then π1 else π2 ≡ (p?;π1) + ((¬p)?;π2) and
while p do π ≡ (p?;π)∗;¬p?), can be interpreted in this setting. The inter-
pretation of programs extends the interpretation of atoms x := exp as follows,

Rx:=exp = {(w, v) | v(x) = ŵ(exp), and v(y) = w(y) for y ∈ V ar with x ̸= y}

where ŵ is the natural extension of v from variables to expressions, recursively
defined by: ŵ(x) = w(x), x ∈ V ar; ŵ(n) = n, k ∈ Z; ŵ(exp + exp′) = ŵ(exp) +
ŵ(exp′); and. ŵ(exp ∗ exp′) = ŵ(exp) ∗ ŵ(exp′). On the other hand, for the
interpretation of propositions in Prop, consider the valuation V : W × Prop→
{0, 1} recursively defined as follows: V (w, exp = exp′) = 1 if ŵ(exp) = ŵ(exp′);
V (w, exp < exp′) = 1 if ŵ(exp) < ŵ(exp′); V (w,¬p) = 1 if V (w, p) = 0; and
V (w, p ∨ p′) = 1 if V (w, p) = 1 or V (w, p′) = 1.

For illustration purposes, consider V ar = {x}, and denote program states
by wi, i ≥ 0 if wi(x) = i. Hence, we have Rx:=x+1 = {(wi, wi+1) | i ≥
0, wi(x) = i}. Program while x ≤ 1 do x := x + 1 corresponds to the in-
terpretation of the term (?(x ≤ 1) ; x := x+ 1)∗; (?(¬x ≤ 1)), given by relation

R̂(?(x≤1) ; x:=x+1)∗;(?(¬x≤1)) = R̂(?(x≤1) ; x:=x+1)∗ ·R̂(?(¬x≤1)), where R̂(?(x≤1) ; x:=x+1)∗

is the suprema of

R̂
1
(?(x≤1) ; x:=x+1) = R̂(?(x≤1) ; x:=x+1) = {(w0, w0), (w1, w1)} · {(w0, w1), (w1, w2), · · · }

= {(w0, w1), (w1, w2)}
R̂

2
(?(x≤1) ; x:=x+1) = R̂(?(x≤1) ; x:=x+1) · R̂1

(?(x≤1) ; x:=x+1)

= {(w0, w1), (w1, w2)} · {(w0, w1), (w1, w2)} = {(w0, w2)}
R̂

3
(?(x≤1) ; x:=x+1) = R̂(?(x≤1) ; x:=x+1) · R̂2

(?(x≤1) ; x:=x+1)

= {(w0, w1), (w1, w2)} · {(w0, w2)} = ∅

Hence, R̂(?(x≤1) ; x:=x+1)∗ = idW ∪ {(w0, w1), (w1, w2), (w0, w2)} and
R̂while x≤1 do x:=x+1 = R̂(?(x≤1) ; x:=x+1)∗;(?(¬x≤1))

= (idW ∪ {(w0, w1), (w1, w2), (w0, w2)}) · {(w2, w2), (w3, w3), · · · }
= {(w0, w2), (w1, w2), (w2, w2), (w3, w3), · · · }

Consider now a GGG-perception σ = {w0.5
0 , w0.2

1 , w0.4
2 , w0.1

3 }. This entails
F (Rwhile x≤1 do x:=x+1) = {(σ, σ(w0,w2)), (σ, σ(w1,w2)), (σ, σ(w2,w2))}, where σ(w0,w2) =
{w0.2

1 , w0.4
2 , w0.1

3 }, σ(w1,w2) = {w0.5
0 , w0.2

2 , w0.1
3 } and σ(w2,w2) = {w0.5

0 , w0.2
1 , w0.4

2 , w0.1
3 }.

Finally, program properties can be analyzed in this setting, for instance,

(σ |=F [Rwhile x≤1 do x:=x+1] |= x > 1

=
l

σ′∈F (Rwhile x≤1 do x:=x+1)

((σ, σ
′
) ∈ F (Rwhile x≤1 do x:=x+1) ⇀ (σ

′ |=F x > 1)

=
(
1 ⇀ (σ

(w0,w2) |=F x > 1)
)
⊓

(
1 ⇀ (σ

(w1,w2) |=F x > 1)
)
⊓

(
1 ⇀ (σ

(w2,w2) |=F x > 1)
)

= (σ
(w0,w2) |=F x > 1) ⊓ (σ

(w1,w2) |=F x > 1) ⊓ (σ
(w2,w2) |=F x > 1) = 0.4

3.2 A-perceptions on quantum evolutions

A quantum transition system [2] for a given set of quantum gates names Act,
is a pair T =

(
H, R

)
where, H is an Hilbert space with states as vectors and

R = (RC ⊆ H × H)C∈Act is a family of unitary transformations that interprets
Act. Additionally, let us take as propositions the state identifiers, say Prop =
{|0⟩ , |1⟩ , . . . }, and consider a valuation function V : H × Prop → {0, 1} such
that V (w, |u⟩) = 1 if w = |u⟩, mapping propositions into the respective closed
Hilbert subspace. Please refer to [8] for an overview on quantum computing and
the Dirac notation used in this example.

Again, the recipe can be applied to deal with A-fuzzy perceptions on the evo-
lution of quantum programs. Clearly, each observation state becomes σ : H → A
to represent a fuzzy perception of the current quantum state. To illustrate the
method, assume the GGG-perception σ = {|1⟩0.7 , |0⟩0.5 , |−⟩0.9 , |+⟩0.4}. The ef-
fect of executing a X-gate4 amounts to F (RX) = {(σ, σ(|1⟩,|0⟩)), (σ, σ(|0⟩,|1⟩)),
(σ, σ(|1⟩,|0⟩)), (σ, σ(|+⟩,|+⟩)), (σ, σ(|−⟩,−|−⟩)), (σ, σ(−|−⟩,|−⟩))} where, for instance,

σ(|1⟩,|0⟩) = {|0⟩0.5 , |+⟩0.4 , |−⟩0.9}. This transition can be graphically represented
as:

4 X =

[
0 1
1 0

]

σ : |1⟩0.7 X // |0⟩0.5
X

oo

|+⟩0.4
X

OO

WW |−⟩0.9

X

��
− |−⟩0

X

OO

−→F (RX) σ(|1⟩,|0⟩) : |1⟩0 X // |0⟩0.7
X

oo

|+⟩0.4
X

OO

WW |−⟩0.9

X

��
− |−⟩0

X

OO

One may pursue this exercise with other quantum gates. For instance, the appli-
cation of an Hadamard gate to σ results in F (RH) = {(σ, σ(|1⟩,|−⟩)), (σ, σ(|−⟩,|1⟩)),
(σ, σ(|0⟩,|+⟩)), (σ, σ(|+⟩,|0⟩))}. An example of the transition (|−⟩ , |1⟩) can be de-
picted as follows:

σ : |1⟩0.7
H

��

|0⟩0.5

Hww
|+⟩0.4

H

77

|−⟩0.9
H

[[−→F (RH) σ(|−⟩,|1⟩) : |1⟩0.9
H

��

|0⟩0.4

Hww
|+⟩0.5

H

77

|−⟩0
H

[[

Finally, let us check the following property in this logic:

(σ |=F ⟨H⟩ |1⟩) =
⊔

σ′∈F (W)

((σ, σ
′
) ∈ F (RH)) ⊓ (σ

′ |=F |1⟩)

= ((σ, σ
(|1⟩,|−⟩)

) ∈ F (RH)) ⊓ (σ
(|1⟩,|−⟩) |=F |1⟩) ⊔ ((σ, σ

(|−⟩,|1⟩)
) ∈ F (RH)) ⊓ (σ

(|−⟩,|1⟩) |=F |1⟩) ⊔
((σ, σ

(|0⟩,|+⟩)
) ∈ F (RH)) ⊓ (σ

(|0⟩,|+⟩) |=F |1⟩) ⊔ ((σ, σ
(|+⟩,|0⟩)

) ∈ F (RH)) ⊓ (σ
(|+⟩,|0⟩) |=F |1⟩)

= (σ
(|1⟩,|−⟩) |=F |1⟩) ⊔ (σ

(|−⟩,|1⟩) |=F |1⟩) ⊔ (σ
(|0⟩,|+⟩) |=F |1⟩) ⊔ (σ

(|+⟩,|0⟩) |=F |1⟩)
=

⊔

w∈W
(σ

(|1⟩,|−⟩)
(w) |= |1⟩) ⊔

⊔

w∈W
(σ

(|−⟩,|1⟩)
(w) |= |1⟩) ⊔

⊔

w∈W
(σ

(|0⟩,|+⟩)
(w) |= |1⟩) ⊔

⊔

w∈W
(σ

(|+⟩,|0⟩)
(w) |= |1⟩)

= 0 ⊔ 0.9 ⊔ 0.7 ⊔ 0.7 = 0.9

4 Concluding

This short paper introduced a recipe’ to analyze transition systems from an
external perspective, therefore taking into account possible partial knowledge
about the current state in which the system is executing. As discussed above,
such situations may arise in many application scenarios, including, but not lim-
ited to, the analysis of quantum programs.

The versatility of this generic method in handling other formalizations of
quantum transition systems (e.g., quantum automata with mixed states [4]),
probabilistic modalities (e.g., [3]), and concurrency operators [7]) is part of on-
going work. The construction of a fuzzified modal logic over another base logic,
itself fuzzified’, is also part of our current area.

References

1. Alexandru Baltag and Sonja Smets. LQP: the dynamic logic of quantum informa-
tion. Math. Struct. Comput. Sci., 16(3):491–525, 2006.

2. Alexandru Baltag and Sonja Smets. The logic of quantum programs. CoRR,
abs/2109.06792, 2021.

3. Alexandru Baltag and Sonja Smets. Reasoning about quantum information: An
overview of quantum dynamic logic. Applied Sciences, 12(9), 2022.

4. Rūsiņš Freivalds, Māris Ozols, and Laura Mančinska. Improved constructions of
mixed state quantum automata. Theoretical Computer Science, 410(20):1923–1931,
2009. Quantum and Probabilistic Automata.

5. P. Hajek. The Metamathematics of Fuzzy Logic. Kluwer, 1998.
6. David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press, Cam-

bridge, MA, USA, 2000.
7. Manisha Jain, Vitor Fernandes, and Alexandre Madeira. Adding concurrency to

quantum dynamic logic. In International Conference on AI Logic and Applications,
pages 17–31. Springer, 2024.

8. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge, 2000.

9. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, USA, 10th
edition, 2011.

10. Thomas G. Wong. Introduction to Classical and Quantum Computing. Rooted
Grove, 2022.

11. L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

Four-valued logics of indicative conditionals

Miguel Muñoz Pérez[0009−0001−3468−8208]

Departamento de Lógica, Historia y Filosofía de la Ciencia,
UNED, Madrid, Spain

mupemiguel99@gmail.com

Abstract. We detail some ways in which the study of three-valued logics
of indicative conditionals can be extended by further adding a new truth-
value. Our approach heavily relies on twist constructions, which have been
already used in the literature in order to provide algebraic semantics in the
three-valued case. Here we follow the inverse path: we first specify how these
twist constructions, expanded with the new truth-value, induce new logics
and then we prove the corresponding twist representation results.

1 Introduction

In this short communication we wish to continue the study on logics of indicative
conditionals as presented in [13,10]. Our intention here is to briefly describe some
ways of generalizing logics of indicative conditionals, prominently through the use
of twist structures (see, e.g., [15,7,16]). For the proofs, detailed observations and
comments on further extensions of this approach, we redirect the reader to [12].

Background. By indicative conditionals we understand the simplest conditional
statements from natural speech – assumed, without loss of generality, to be of the
form if-then – that are concerned with what could be true. Much has been said re-
garding the formalization of indicative conditionals (see, e.g. [4,5] for a survey); for
now let us simply point out that, in case the antecedent of an indicative conditional
is false, the overall statement seems to lack a definite truth-value and that we may
speak of a semantic gap. Among the possible ways of formalizing such intuition, we
can simply add a new truth-value 1/2 to the classical ones 0 and 1 in such a way that
0 → ψ = 1/2. It is also common to consider logics in which non-falsity is preserved
under inferences, that is, logics having 1/2 and 1 as designated elements. Of course,
the task of determining the behavior of 1/2 with respect to the usual connectives is
left open (intuitions may differ when settling, e.g., the value of 1/2 → ψ). But these
constraints are enough to determine the class of what we call (propositional) logics
of indicative conditionals. Here, we wish to extend our previous analysis of four main
cases, namely: De Finetti’s logic DF [8,4,5], Cooper’s logic of ordinary language OL
[3,16], Farrell’s logic F [6,13] and Cantwell’s logic of conditional negation CN [1,13].

Preliminaries. Now, the main idea behind the use of twist structures is that of
representing the algebraic semantics associated with a target logic (in our case DF,
CN and OL) as a special kind of power construction in terms of more well-known
structures (see, e.g. [14,15]). Below we introduce these familiar classes of algebras.

A distributive lattice (L; ∧,∨) is a De Morgan lattice if there is an operation
¬ : L → L such that both ¬¬a = a and ¬(a ∧ b) = ¬a ∨ ¬b hold for every a, b ∈ L.
A De Morgan lattice L is called centered if there is some element c ∈ L such that
¬c = c. If L has two distinct centers, we say that it is bi-centered. In case a De
Morgan lattice is bounded, we speak of a De Morgan algebra. A Kleene algebra is
a De Morgan lattice L in which it holds that ¬a ∧ a ⩽ ¬b ∨ b, for every a, b ∈ L.
On the other hand, recall that a generalized Boolean algebra (B; ∧,→) is the 0-free
reduct of a Boolean algebra (B; ∧,→, 0).

2 M. Muñoz Pérez

The three-valued case. Regarding our target three-valued logics, the overall strategy
is common through all the cases: first, one identifies some class of algebras that can
be associated (in a relevant sense) with the logic considered in each case; then, one
defines a twist structure and check that it is an element of the aforementioned class
and, finally, one proves a twist representation result, that is, that each member of
the initial class is isomorphic to some of these twist algebras. Since we will later
only deal with DF, CN and F, we redirect the reader interested in OL to [9,16],
where this logic has been deeply studied. In the other cases, we will only explicitly
present the algebraic counterpart in each case; for the twist representation results,
see [12, §2]. For instance, the algebraic models of DF can be seen as centered Kleene
algebras (see above) [2]. For CN, one can define, following [13]:

Definition 1. A CN-algebra is an algebra A := (A; ∧,→,¬, 1/2) such that the
reduct (A; ∧,¬, 1/2) is a centered Kleene lattice (with ∨ defined, as usual, through
De Morgan’s law) and the following equations hold: (CN1) (x ∧ y) → z = x →
(y → z), (CN2) 1/2 ≤ x → (y → y), (CN3) 1/2 ≤ ((x → y) → x) → x, (CN4)
3(x → y) = 3x → 3y and (CN5) ¬(x → y) = x → ¬ y, where 3x := x ∧ 1/2.

One can similarly prove a twist representation result for this case, which has
been already studied in [7]. It is also worth noting that one can alternatively define
F-algebras and obtain a similar result (again, see [12]):

Definition 2. A F-algebra (A; ¬,∧,∨,→, 1/2) such that (A; ¬,∧,∨, 1/2) is a cen-
tered Kleene algebra satisfying that: (F1) x ∧ y = x ∧ (x → y), (F2) x → y ≤
(x ∧ y) ∨ 1/2, (F3) (x ∧ y) → z = x → (y → z), (F4) 1/2 ≤ x → (y → y), (F5)
1/2 ≤ ((x → y) → x) → x and (F6) 3(x → y) = 3x → 3y, where 3x := x ∧ 1/2.

2 The four-valued case

The overall strategy carried out in the twist semantics ultimately consists in
identifying 0 with (0, 1), 1/2 (from now on, ⊤) with (1, 1) and 1 with (1, 0). But the
operations introduced in the corresponding twist structures also admit as argument
the pair (0, 0). Hence, this pair could be seen as corresponding to the new truth-value
⊥ through the previous identification. In what follows, we let A4 := {0,⊥,⊤,1}.
We will only deal explicitly with DF, CN and F (for more details, also regarding
the philosophical motivation of these logics, see [12, §3]).

2.1 Adding a semantic gap

De Finetti. The tables for the corresponding operations are the following ones:

¬
0 1
⊥ ⊥
⊤ ⊤
1 0

→DF 0 ⊥ ⊤ 1
0 ⊤ ⊤ ⊤ ⊤
⊥ 0 ⊥ 0 ⊥
⊤ ⊤ ⊤ ⊤ ⊤
1 0 ⊥ ⊤ 1

∧K 0 ⊥ ⊤ 1
0 0 0 0 0
⊥ 0 ⊥ 0 ⊥
⊤ 0 0 ⊤ ⊤
1 0 ⊥ ⊤ 1

∨K 0 ⊥ ⊤ 1
0 0 ⊥ ⊤ 1
⊥ ⊥ ⊥ 1 1
⊤ ⊤ 1 ⊤ 1
1 1 1 1 1

The implication →DF is computed by the term that defines it in the three-valued
case. In this way, we may define the logic induced by DFg induced by the matrix
(DFg4, {⊤,1}), where DFg4 := (A4; ¬,∧K,∨K,→DF). As we have seen before, we
can simply work with ∧K,∨K and ⊤. A reasonable choice for the twist structures in
this case is the following:

Definition 3. Let L := (L; ∧,∨, 0, 1) be a bounded distributive lattice. The full
DFg-twist algebra over L consists in an algebra L▷◁ with universe L× L and oper-
ations

Four-valued logics of indicative conditionals 3

i. (x1, y1) ∧ (x2, y2) := (x1 ∧ x2, y1 ∨ y2),
ii. ¬(x, y) := (y, x),

iii. ⊤ := (1, 1) and ⊥ := (0, 0).
A DFg-twist algebra over L is any subalgebra A ⩽ L▷◁ such that π1[A] = L.

Definition 4. A DFg-algebra (A; ∧,∨,¬, 0,⊥,⊤) is a bi-centered De Morgan lat-
tice (A; ∧,∨,¬,⊥,⊤) with lower bound 0 and where ⊥ ∧ ⊤ = 0.

Then, clearly, every DFg-twist algebra is a DFg-algebra. Given a DFg-algebra A :=
(A; ∧,∨,¬, 0,⊥,⊤), define the map 3 : A → A : x 7→ x ∧ ⊤ and the algebra
3(A) := (3(A); ∧,∨, 0,⊤), in which the operations are defined as restrictions of
the ones from A. Then, the following is clear by the DF case and noting that 0 is
the desired lower bound (see [12]):

Lemma 1. Given a DFg-algebra A, it holds that (3(A); ∧,∨, 0,⊤) is a bounded
distributive lattice.

Theorem 1 (DFg-twist representation). Every DFg-algebra A is isomorphic
to a DFg-twist algebra over 3(A), as witnessed by the map ι : A → 3(A) × 3(A) :
a 7→ (3a,3¬ a).

Cantwell. For CN, the new tables are the following:

→OL 0 ⊥ ⊤ 1
0 ⊤ ⊤ ⊤ ⊤
⊥ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊥ ⊤ 1
1 0 ⊥ ⊤ 1

∧K 0 ⊥ ⊤ 1
0 0 0 0 0
⊥ 0 ⊥ 0 ⊥
⊤ 0 0 ⊤ ⊤
1 0 ⊥ ⊤ 1

∨K 0 ⊥ ⊤ 1
0 0 ⊥ ⊤ 1
⊥ ⊥ ⊥ 1 1
⊤ ⊤ 1 ⊤ 1
1 1 1 1 1

We define the logic CNg as induced by the matrix (CNg4, {⊤,1}), where CNg4 :=
(A4; ¬,∧K,∨K,→OL). This logic has already been considered in [7, p. 61]. We define:

Definition 5. Let B be a Boolean algebra. We define the full CNg-twist algebra
over B as the algebra B▷◁ with universe B ×B and operations

i. (x1, y1) ∧ (x2, y2) := (x1 ∧ x2, y1 ∨ y2),
ii. ¬(x, y) := (y, x),

iii. (x1, y1) → (x2, y2) := (x1 → x2, x1 → y2),
iv. ⊤ := (1, 1) and ⊥ := (0, 0).
As before, one can define x∨ y := ¬(¬x∧ ¬ y). A CNg-twist algebra over B is any
subalgebra A ⩽ B▷◁ such that π1[A] = B.

Then, it is clear that CNg4 is isomorphic to the full CNg-twist algebra over the
two-element Boolean algebra by the usual identification. Note that, since ⊤ is im-
mediately definable by ⊥, we can omit ⊤ in the previous definition. It is clear that
every CNg-twist algebra belongs to the following class:
Definition 6. A CNg-algebra (A; ∧,∨, 0,¬,→ ⊥,⊤) is a DFg-algebra (A; ∧,∨,¬, 0,⊥,⊤)
verifying (CN1)-(CN5) from Definition 1.
Given a CNg-algebra (A; ∧,∨, 0,→,¬,⊥,⊤), define 3 : A → A : x 7→ x ∧ ⊤ as
before. Similarly as in the DFg case, by restricting the operations we can define
the algebra 3(A) := (3(A); ∧,∨, 0,→,⊤). Moreover, the CN case allows us to
prove, by simply noting that 0 is a lower bound for the generalized Boolean algebra
(3(A); ∧,∨,→,⊤) that:

Lemma 2. Given a CNg-algebra A, it holds that 3(A) is a Boolean algebra.

Theorem 2 (CNg-twist representation). Every CNg-algebra A is isomorphic
to a CNg-twist algebra over 3(A), as witnessed by the map ι : A → 3(A) × 3(A) :
a 7→ (3a,3¬ a).

4 M. Muñoz Pérez

Farrell. The following twist structure allows us to compute the table below:

Definition 7. Consider a Boolean algebra B. We define the full Fg-twist algebra
over B as the algebra B▷◁ with universe B ×B and operations

i. (x1, y1) ∧ (x2, y2) := (x1 ∧ x2, y1 ∨ y2),
ii. ¬(x, y) := (y, x),

iii. ⊤ := (1, 1) and ⊥ := (0, 0),
iv. (x1, y1) → (x2, y2) := (x1 → x2, y1 ∨ y2).
A Fg-twist algebra over B is any subalgebra A ⩽ B▷◁ such that π1[A] = B.

→F 0 ⊥ ⊤ 1
0 ⊤ ⊤ ⊤ ⊤
⊥ ⊤ 1 ⊤ 1
⊤ 0 0 ⊤ ⊤
1 0 ⊥ ⊤ 1

and then define the logic Fg as induced by the matrix (Fg4, {⊤,1}), where Fg4 :=
(A4; ¬,∧K,∨K,→F). Obviously, the preceding remarks on the inter-definability of
→OL and →F still holds, so we can simply refer to the CNg case. However, for the
sake of completeness, let us point out that one can define:

Definition 8. A Fg-algebra (A; ∧,∨, 0,¬,→ ⊥,⊤) is a DFg-algebra (A; ∧,∨,¬, 0,⊥,⊤)
verifying (F1)-(F6) from Definition 2.

So that every Fg-twist algebra is in fact a Fg-algebra. Moreover, given a Fg-algebra
(A; ∧,∨, 0,→,¬,⊥,⊤), we can define 3 : A → A : x 7→ x ∧ ⊤ as before. Similarly
as in the CNg case, by restricting the operations we can define the algebra 3(A) :=
(3(A); ∧,∨, 0,→,⊤). We already know that 3(A) has a reduct that is a bounded
distributive lattice. Moreover, the F case allows us to prove, by simply noting that
0 is a lower bound for the generalized Boolean algebra (3(A); ∧,∨,→,⊤) that:

Lemma 3. Given a Fg-algebra A, it holds that 3(A) is a Boolean algebra.

Theorem 3 (Fg-twist representation). Every Fg-algebra A is isomorphic to a
Fg-twist algebra over 3(A), as witnessed by the map ι : A → 3(A) × 3(A) : a 7→
(3a,3¬ a).

2.2 Adding a falsity

De Finetti (kinda). In the case of CNg, working first with DFg was quite instruc-
tive, since it allowed use to first study the implication-free fragment of our full
language. Here, it seems reasonable to proceed similarly. However, the change of
the negation operator compromises the definability results above and, in particular,
the definability of →DF. We will later return to this. For now, we may define DFf as
the logic induced by (DFf4, {⊤,1}), where DFf4 := (A4; −,∧K,∨K,⊤)1 and where
− interchanges 0 with 1 and ⊥ with ⊤. As we announced before regarding twist
structures, an inner negation is needed from each factor algebra. Hence, it seems
natural to define:
1 Philosophically, it is clear that De Finetti’s logic is not captured by having the strong

Kleene operations and adding a negation: this seems more like an accidental feature that
holds in the DF and DFg cases. Rather, one should consider the full modified language
−, ∧K, ∨K, →DF. However, we are interested in this variation of DF because in provides
some background for the next case studies. One could also provide some philosophical
vindication of this setting (see below).

Four-valued logics of indicative conditionals 5

Definition 9. Let D1, D2 be two De Morgan algebras. The full DFf-twist algebra
over D1 and D2 consists in an algebra D1 ▷◁ D2 with universe D1 ×D2 and opera-
tions

i. (x1, y1) ∧ (x2, y2) := (x1 ∧D1 x2, y1 ∨D2 y2),
ii. −(x, y) := (¬D1x,¬D2y),

iii. ⊥ := (0D1 , 0D2).
Note that we may simply let ⊤ := −⊥ and, similarly, we can define x ∨ y :=
−(−x∧ −y) and x → y := (−x∧ ⊤) ∨ (x∧ y). A DFf-twist algebra over D1 and D2
is any subalgebra A ⩽ D1 ▷◁ D2 such that π1[A] = D1.

Note how DFf4 is isomorphic to the DFf-twist algebra in which the factor structures
are both the two-element Boolean algebra. Having two different factor algebras in
the previous definition is motivated by the behavior of the negation operation. One
can check that every DFf-twist algebra is of the following kind:

Definition 10. A DFf-algebra (D; ∧,∨,¬, 0, 1,⊤) is a bounded De Morgan lattice
(D; ∧,∨,¬, 0, 1) in which it holds that: (DFf1) ⊤ (and ¬⊤) receive different values to
those of 0 and 12, (DFf2) ⊤∧¬⊤ = 0 and (DFf3) a∧⊤ = b∧⊤ and a∨¬⊤ = b∨¬⊤
imply that a = b. Observe that we also have ¬0 = 1. We set ⊥ := ¬⊤.

Now, given a DFf-algebra (D; ∧,∨,¬, 0, 1,⊥,⊤), set 3x := x∧ ⊤ and 2x := x∧ ⊥.
By restricting the operations from D, one can define (3(D); ∧,∨,¬3, 0,⊤) and
(2(D); ∧,∨,¬2, 0,⊥), where ¬33a := 3¬a and ¬22a := 2¬a. Then, it is clear
that these algebras are De Morgan algebras: for instance, one can easily check that
both ¬3 and ¬2 preserve tops and bottoms. Then, we can prove:

Theorem 4 (DFf-twist representation). Let D be a DFf-algebra. Then, the
map ι : D → 3(D) × 2(D) : a 7→ (3a,2¬a) witnesses an isomorphism between D
and the corresponding DFf-twist structure.

Cantwell. We define the logic CNf as induced by (CNf4, {⊤,1}), where one sets
CNf4 := (A4; −,∧K,∨K,→OL). The preceding case of DFf has shown how we need
to allow different factor algebras in our twist representation. Not only this but,
comparing with Definitions 5, we need some map for the definition of the implication
operation, since it is the only one not determined component-wise by the inner
operations of the factor algebras:

Definition 11. Let B1, B2 be two Boolean algebras and ρ : B1 → B2 an embedding.
We define the full CNf-twist algebra over B1 and B2 as the algebra B1 ▷◁ B2 with
universe B1 ×B2 and operations

i. (x1, y1) ∧ (x2, y2) := (x1 ∧B1 x2, y1 ∨B2 y2),
ii. −(x, y) := (¬B1x,¬B2y),

iii. (x1, y1) → (x2, y2) := (x1 →B1 x2, ρ(x1) →B2 y2),
iv. ⊥ := (0B1 , 0B2).
Additionally, one can define x∨y := −(−x∧−y). A CNf-twist algebra over B1 and
B2 is any subalgebra A ⩽ B1 ▷◁ B2 verifying that π1[A] = B1.

Note that in this case we have that ⊤ is definable by −x → (x → x) and hence
⊥ is too by letting ⊥ := −⊤ (alternatively, we may set ⊤ := (0, 1) → (1, 0) and

2 As a quasi-equation, we can see this condition as ⊤ ≈ 1 ⇒ x ≈ y, so that only the
trivial algebra can identify ⊤ and 1 (and their negations).

6 M. Muñoz Pérez

⊥ := −⊤)3. Again, as expected, CNf4 is isomorphic to the CNf-twist algebra over
two copies of the two-element Boolean algebra (where ρ is the identity)4.

Farrell. The virtue of Farrell’s implication in twist structures is that, unlike Cooper’s,
it can be defined component-wise. Since one of the factors simply needs less opera-
tions, we can define this twist structure from mixed factor algebras:
Definition 12. Let B and D be a Boolean algebra and a De Morgan algebra, re-
spectively. We define the full Ff-twist algebra over B and D as the algebra (B×D)▷◁

with universe B ×D and operations
i. (x1, y1) ∧ (x2, y2) := (x1 ∧B x2, y1 ∨D y2),

ii. −(x, y) := (¬Bx,¬Dy),
iii. (x1, y1) → (x2, y2) := (x1 →B x2, y1 ∨D y2),
iv. ⊥ := (0B , 0D).
Additionally, one can set x∨ y := −(−x∧ −y). A Ff-twist algebra over B and D is
any subalgebra A ⩽ (B ×D)▷◁ such that π1[A] = B.

We can define Ff4 := (A4; −,∧K,∨K,→F) and take the logic Ff to be induced by
the matrix (Ff4, {⊤,1}). The reader may wonder whether we could restrict to this
case in order to study CNf. However, as we pointed out regarding DFf, the change
in the negation operation has several implications, namely, that →OL fails to be
definable by means of →F. Moreover, it turns out that the term (⊤ ∧ ¬x) ∨ (x∧ y)
defines →F so that, prima facie, we can restrict ourselves to the isomorphism of
Theorem 4. Now, turning to the twist representation result, let us first define an
appropriate class of algebras:
Definition 13. A Ff-algebra (D; ∧,∨,¬,→, 0, 1,⊥,⊤) is a DFf-algebra (D; ∧,∨,
¬, 0, 1,⊥,⊤) in which the following conditions hold: (Ff1) x ∧ y = x ∧ (x → y),
(Ff2) (x ∧ y) → z = x → (y → z), (Ff3) ⊤ ≤ ((x → y) → x) → x, (Ff4)
3(x → y) = 3x → 3y and (Ff5) 2¬(x → y) = 2¬(x ∧ y), where 3x := x ∧ ⊤ and
2x := x ∧ ⊥.
One can check that every Ff-twist algebra is in fact a Ff-algebra. Now, define simi-
larly as in the DFf case: (3(D); ∧,∨,¬3,→, 0,⊤) and (2(D); ∧,∨,¬2, 0,⊥), where,
remember, ¬33a := 3¬a and ¬22a := 2¬a.
Lemma 4. Given a Ff-algebra (D; ∧,∨,¬,→, 0, 1,⊥,⊤), it holds that 3(D) is a
Boolean algebra and that 2(D) is a De Morgan algebra.
Theorem 5 (DFf-twist representation). Let D be a Ff-algebra. Then, the map
ι : D → 3(D) × 2(D) : a 7→ (3a,2¬a) witnesses an isomorphism between D and
the corresponding Ff-twist structure.

Acknowledgments. I would like to thank Umberto Rivieccio for his useful comments
and for providing me with some crucial insights, as well as the anonymous referees for their
suggestions on how to improve the present paper. I hope to have properly incorporated
them into the text.
3 Another observation is that, having all four constants available, from the ‘truth order’

∧, ∨ one can explicitly define, via the so-called 90-degree lemma [11, Lemma 1.5], the
‘knowledge order’, usually considered on bi-lattices (see, e.g., [11]). The definitions are:
x ⊓ y := (x ∧ ⊥) ∨ (y ∧ ⊥) ∨ (x ∧ y) and x ⊔ y := (x ∧ ⊤) ∨ (y ∧ ⊤) ∨ (x ∧ y). Additionally,
one can compute their point-wise form in twist algebras.

4 Note that the new negation prevents us from having Boethius theses. Dummett com-
ments above suggested unifying both a classical negation for two kinds of truth while
at the same time preserving Boethius theses, and these requirements cannot be met in
the case of CN. The reader should note that Boethius theses were crucial in proving
the twist representation results above (see [12]). New conditions involving the negation
should be satisfied in order for the isomorphism from Theorem 4 to work properly in
this case.

Four-valued logics of indicative conditionals 7

References

1. Cantwell, J.: The logic of conditional negation. Notre Dame Journal of Formal Logic
49(3): 245-260 (2008). https://doi.org/10.1215/00294527-2008-010

2. Cignoli, R.: The class of Kleene algebras satisfying an interpolation property and
Nelson algebras. Algebra Universalis 23, 262–292 (1986). https://doi.org/https:
//doi.org/10.1007/BF01230621

3. Cooper, W.S.: The Propositional Logic of Ordinary Discourse. Inquiry: An Interdis-
ciplinary Journal of Philosophy 11(1-4), 295–320 (1968). https://doi.org/10.1080/
00201746808601531

4. Égré, P., Rossi, L., Sprenger, J.: De Finettian logics of indicative conditionals part I:
trivalent semantics and validity. Journal of Philosophical Logic 50(2), 187–213 (Apr
2021). https://doi.org/10.1007/s10992-020-09549-6

5. Egré, P., Rossi, L., Sprenger, J.: De Finettian logics of indicative conditionals part ii:
proof theory and algebraic semantics. Journal of Philosophical Logic 50(2), 215–247
(Apr 2021). https://doi.org/10.1007/s10992-020-09572-7

6. Farrell, R.J.: Material implication, confirmation, and counterfactuals. Notre Dame
Journal of Formal Logic 20 (2), pp. 383-394 (1979)

7. Fazio, D., Odintsov, S.P.: An algebraic investigation of the Connexive Logic C. Studia
Logica (Jun 2023). https://doi.org/10.1007/s11225-023-10057-2

8. de Finetti, B.: La logique de la probabilité. Actes du Congrés International de Philoso-
phie Scientifique (1936)

9. Greati, V., Marcelino, S., Rivieccio, U.: Axiomatizing the logic of ordinary discourse.
Proceeding of IPMU24 (to appear) (May 5 2024)

10. Greati, V., Marcelino, S., Muñoz Pérez, M., Rivieccio, U.: Analytic calculi for logics
of indicative conditionals. In: Pozzato, G. L., Uustalu, T. (eds) Automated Reasoning
with Analytic Tableaux and Related Methods. TABLEAUX 2025. Lecture Notes in
Computer Science(), vol 15980. Springer, Cham. (2026)

11. Jung, A., Rivieccio, U.: Priestley duality for bilattices. Studia Logica 100 (1-2):223-252
(2012)

12. Muñoz Pérez, M.: Four-valued logics of indicative conditionals. Preprint. Available at
https://arxiv.org/abs/2510.21882 (2025)

13. Muñoz Pérez, M., Rivieccio, U.: Indicative conditionals: Some algebraic considerations.
In Kozen, D. & de Queiroz, R. (eds) Logic, Language, Information, and Computation,
WoLLIC 2025, Lecture Notes in Computer Science, vol 15942, Springer (2025)

14. Rivieccio, U.: Implicative twist-structures. Algebra Univers. 71, 155–186 (2014)
15. Rivieccio, U.: Representation of De Morgan and (Semi-)Kleene lattices. Soft Com-

puting, 24, pp. 8685–8716 (2020). https://doi.org/https://doi.org/10.1007/
s00500-020-04885-w

16. Rivieccio, U.: The algebra of ordinary discourse. On the semantics of
Cooper’s logic. Archive for Mathematical Logic (2025). https://doi.org/10.1007/
s00153-024-00961-2

Dynamic Fuzzy Language for Labeled Fuzzy
Reactive Graphs

Suene C. Duarte1[0009−0003−2418−8079], Manuel A. Martins2, Daniel
Figueiredo2, and Regivan H. Santiago3[0000−0002−4991−9603]

1 Universidade Federal Rural do Semi-Árido, Brasil
2 CIDMA – Universidade de Aveiro, Portugal

3 Universidade Federal do Rio Grande do Norte, Brasil
suenecampos@ufersa.edu.br

regivan@dimap.ufrn.br
martins@ua.pt

daniel.figueiredo@ua.pt

Abstract. A Labeled Fuzzy Reactive Graph (LFRG) extends fuzzy
graphs with labels – representing actions between states – and higher-
order edges, that are responsible for updating the fuzzy values after each
state transition. These structures present advantages such as being well-
suited for modeling dynamic systems with path-dependencies, as well as
offering a compact representation for several models that would other-
wise be infinite. Introducing a dynamic fuzzy logic language for LFRGs
enables formal verification of their properties, supporting applications in
complex and adaptive domains.

Keywords: Labeled Fuzzy Reactive Graph · Dynamic Fuzzy Logic Lan-
guage · Fuzzy Graphs.

1. Introduction
The notion of Reversal Fuzzy Reactive Graphs (RFRGs) was introduced by
Campos et al. [7] and describes Fuzzy Reactive Graphs [17] enriched with high
order-arrows that activate or deactivate arrows in this structure. Such graphs
allow us to incorporate reactivity into the model by running modifications to
the set of active edges when arrows are traversed. This capability is especially
relevant in multi-agent scenarios, where the actions of one agent can influence or
alter the behavior of others. Such interactions are common in environments with
limited resources or involving some form of competition among agents. Although
similar structures have been explored in previous studies, as first introduced in
[10], they were applied within a context without fuzziness. Some authors such as
Areces [1], van Benthem [4] and Marcelino & Gabbay [12] provide foundational
contributions to works focused on graph-like structures whose set of edges can
be changed.

In 2024, Campos et.al [6] expand the range of application for RFRG by
introducing Labeled Fuzzy Reactive Graphs (LFRG) which are graphs enriched
with labels on edges and high order-arrows, that activate or deactivate arrows in

2 Duarte. S.C et al.

this structure. In all these types of graphs, reactivity is worked between states
through the action of aggregation functions. Also in [6], the operations based on
aggregations of union, intersection and threshold of LFRGs and an application
were presented. This paper complements [6] presenting a formal dynamic fuzzy
language to verify properties of such structures.

The paper is organized as follows: Section 2 presents some basic concepts
of LFRGs. Section 3 presents a formal dynamic fuzzy language to LFRGs and,
finally, Section 4 provides some conclusions, final remarks and future work.

2. Preliminaries
We presume that the reader is already familiar with the fundamentals of fuzzy
set theory and aggregation functions. We emphasize, however, that LFRG are
based on fuzzy graphs as described in [15], where nodes do not have fuzzy values.
Also, we assume that the membership function is valued in the complete lattice
[0, 1] × {on,off} using the product order where off ≤ on. The membership
function will be treated as equivalent to the corresponding fuzzy set.

Note 1. Since T-norms and T-conorms are associative and commutative, they
can be uniquely extended to any arity. Let J = (ji)i∈I be a family elements in
[0, 1]. For a T-norm T , the extension of T applied to J is denoted by T

i∈J
ji. The

same notation is applied to any T-conorm S.
The extensions of T and S are such that they become the identity function

case I is a singleton, and T
i∈J

ji = 1, S
i∈J

ji = 0 case I = {}.

We briefly recall the basic notions about Labeled Fuzzy Reactive Graphs, as
introduced in [6]. In the paper, the authors consider that, under certain condi-
tions, more than one edge can be crossed at the same time. In what follows, we
present this structure and describe how the model updates occur.

Definition 1 (Labeled Fuzzy Reactive Graph [6]). Let L be a set of labels
and A a set of ternary aggregations. A Labeled Fuzzy Reactive Graph
(LFRG) is an structure M = ⟨W,SL, µ,AgM ⟩ s.t.

– W is a non-empty set of states/nodes;
– SL =

⋃

i≥0

SL
i is a set of generalized and labeled edges where:

– SL
0 ⊆W × L×W ; and SL

n ⊆ SL
0 × SL

n−1 × {◦, •};

– µ : SL → [0, 1] × {on,off} is a fuzzy membership function;

– AgM : SL
→ −→ A, where

SL
→ :=

{
a0i ∈ SL

0 ; Ja0i , b, σK ∈ SL for some b ∈ SL and some σ ∈ {◦, •}
}

is the set of source arrows.

Dynamic Fuzzy Language for Labeled Fuzzy Reactive Graphs 3

For any set S ⊆ SL, S∗ = {s ∈ S : µ2(s) = on} contains its active arrows.
To prevent ambiguity, we impose that

(
a, b, ◦

)
̸∈ SL

n or
(
a, b, •

)
̸∈ SL

n , for
n ≥ 1.

Arrows that have • in the third component are called connecting arrows and
that have ◦ in the third component are called disconnecting arrows. Graphically,
we represent active arrows with a solid line, while inactive arrows are drawn as
dashed. The process of connecting (resp. disconnecting) arrows modifies the state
of the target arrow into active (resp. inactive), and these actions are indicated
with a black (resp. white) arrowhead.

For LFRG, the case in which a connecting and disconnecting arrow, with the
same source arrow, acting over the same target arrow is allowed only if even one
being on and the other off and they have different labels.

Example 1. In Fig.2, we get L = {α, β, γ, θ}, SL
0 = {[x, α, y], [yβ, z], [x, γ, z],

[x, θ, w]} and SL
1 = {J[yβ, z], [x, γ, z], ◦K, J[x, γ, z], [x, θ, w], •K}. The arrow J[yβ, z],

[x, γ, z], ◦K is a disconnecting arrow and J[x, γ, z], [x, θ, w], •K is a connecting ar-
row. The Table 1 shows the values of the arrows applied to the µ function.

x y z

w

α
0.8

β
0.5

γ
0.1

θ
0.3 0.6

0.4

Fig. 1: Example of a LFRG

x y z

w

α

0.8

β

0.5

γ
0.33

θ
0.3 0.6

0.4

Fig. 2: LFRG after cross the arrow [y, β, z]

Arrow µ

[x, α, y] (0.8, on)
[yβ, z] (0.5, on)
[x, γ, z] (0.1, on)
[x, θ, w] (0.3,off)

J[yβ, z], [x, γ, z], ◦K (0.4,on)
J[x, γ, z], [x, θ, w], •K (0.6,on)

Table 1: Image of the fuzzy µ function

In order to avoid inconsistency, [6] establishes that a set of high-order arrows
pointing to an arrow b , if crossed simultaneously, will only exert modifications
on b if all are connection arrows or, all are disconnection arrows.

Fig.2 shows the LFRG of Fig.1(b) after crossing [y, β, z] and interpreting
AgM ([y, β, z]) as the arithmetic mean. For other examples, considering even the
case of several arrows being crossed simultaneously, see [6].

4 Duarte. S.C et al.

3. A Dynamic Fuzzy Language for LFRG
In order to present a logical language to verify properties of a system modeled
by a LFRG, we propose a dynamic logic, which takes into account the ones
proposed in [3] and [17], to verify the properties of Fuzzy Reactive Graphs. Thus,
we provide a formal language which combines both Propositional Dynamic Logic
(PDL) and fuzzy semantics. PDL is one of the most prominent applied modal
logics and enables applications in different areas [11, 13, 18]. In this paper, we
consider LFRG with a finite number of states and labels.

Given the fact that we can cross more than one (parallel) edge on an RFSG,
we consider a dynamic logic with a concurrent composition (or intersection)
operator, which is based on [3]. However, we note that if we only allow a single
edge to be crossed at each time, we do not need it, and we can thus consider the
fragment of this logic without the concurrent composition operator.

The language of a propositional dynamic fuzzy logic for LFRG consider a set
AProp of atomic propositions, the set L of labels and the following symbols:

– logical symbols: ⊤,⊥,¬,∨,∧,⇒,⇔;
– label symbols: ; (composition), + (nondeterministic choice) and ∧ (concur-

rent composition or intersection) and ? (test);
– parentesis: (,).

We use the symbol ∧ for logical conjunction, and concurrent composition of
labels. However, its meaning should be clear according the context in which they
are used.

Definition 2 (Syntax). Consider the set AProp of all propositions and the set
L of all labels. The set Form of formulas and the set L of words are defined as
the smallest sets such that:

– AProp ⊆ Form and L ⊆ L;
– If φ,ψ ∈ Form, then ⊥, ⊤, φ ∨ ψ, φ ∧ ψ, φ⇒ ψ, φ⇔ ψ, ¬φ ∈ Form;
– If a1, ..., an ∈ L with n > 1, then ∧(a1, ..., an) ∈ L
– If α, β ∈ L, then α;β, α+ β ∈ L
– If φ ∈ Form and α ∈ L, then [α]φ, ⟨α⟩φ ∈ Form;
– If φ ∈ Form, then φ? ∈ L.

Definition 3. A Labeled Fuzzy Reactive Model (LFRM) is a tuple M =
⟨M,V,H⟩ s.t. M = ⟨W,SL, µ,AgM ⟩, V : W ×AProp −→ [0, 1] is a fuzzy valua-
tions and H =

(
Hj : [0, 1]j → [0, 1]

)
2≤j≤m a family of symmetric aggregations.

The family of aggregations H is only needed when more than one arrow is
travessed simultaneously to aggregate their impact on target arrows (check [6]).

Definition 4 (Satisfaction). Let F = ⟨[0, 1], T, S,N, I,B, 0, 1⟩ be a fuzzy se-
mantic and M = ⟨M,H, V ⟩ be a LFRM. We define the grade of certainty of a
given formula φ to be true at state w, JφKFM,w, recursively:

– JpKFM,w = V (w, p), for p ∈ AProp;
– J¬φKFM,w = N(JφKFM,w);
– Jφ ∧ ψKFM,w = T(JφKFM,w, JψKFM,w);
– Jφ⇒ ψKFM,w = I(JφKFM,w, JψKFM,w);

– J⊤KFM,w = 1;
– J⊥KFM,w = 0;
– Jφ ∨ ψKFM,w = S(JφKFM,w, JψKFM,w);
– Jφ⇔ ψKFM,w = B(JφKFM,w, JψKFM,w)

Dynamic Fuzzy Language for Labeled Fuzzy Reactive Graphs 5

– J[β]φKFM,w = T
w′ : (w,β,w′)∈(SL

0)∗

(
I
(
µ1(w, β,w

′), JφKF
MAgM

(w,β,w′),w
′

))
,

where MAgM
(w,β,w′) =

(
MAgM

(w,β,w′),H, V
)
;

– J⟨β⟩φKFM,w = S
w′ : (w,β,w′)∈(SL

0)∗

(
T
(
µ1(w, β,w

′), JφKF
MAgM

(w,β,w′),w
′

))
,

where MAgM
(w,β,w′) =

(
MAgM

(w,β,w′),H, V
)
;

– J[∧(α1, ..., αn)]φKFM,w = T
w′ :∀β∈{α1,...,αn},
(w,β,w′)∈(SL

0)∗

(
I
(
µ1(w, β,w

′), JφKF
MAgM,H
ā ,w′

))
,

where MAgM ,H
ā =

(
MAgM ,H

ā ,H, V
)

with ā being a sequence of the arrows contained
in {(w, β,w′) ∈ (SL

0)
∗ : β ∈ {α1, ..., αn};

– J⟨∧(α1, ..., αn)⟩φKFM,w = S
w′ :∀β∈{α1,...,αn},
(w,β,w′)∈(SL

0)∗

(
T
(
µ1(w, β,w

′), JφKF
MAgM,H
ā ,w′

))
,

where MAgM ,H
ā =

(
MAgM ,H

ā ,H, V
)

with ā being a sequence of the arrows con-
tained in {(w, β,w′) ∈ (SL

0)
∗ : β ∈ {α1, ..., αn};

– J[α+ β]φKFM,w = T
(J[α]φKFM,w, J[β]φKFM,w

)
;

– J⟨α+ β⟩φKFM,w = S
(J⟨α⟩φKFM,w, J⟨β⟩φKFM,w

)
;

– J[α;β]φKFM,w = J[α]([β]φ)KFM,w;
– J[ψ?]φKFM,w = I(JψKFM,w, JφKFM,w);

– J⟨α;β⟩φKFM,w = J⟨α⟩(⟨β⟩φ)KFM,w;
– J⟨ψ?⟩φKFM,w = T(JψKFM,w, JφKFM,w);

Example 2. Consider AProp={p} and let M be the LFRM illustrated by Fig.
2 where V defined according to the Table 2. We provide an example of how to
evaluate the formula ⟨α;α⟩p at the state x, which means that it is possible to
reach a state from x where p is satisfied, with the word α;α.

x y z w

α

0.8
β
0.5

α
0.3

α
0.2

0.4

Fig. 3: Illustration of the LFRM used in Example 2.

x y z w

p 0.2 0 0.4 0.1
Table 2: Truth values of propositions on each state.

For the following evaluation, we consider AgM be the arithmetic mean for
all zero-order arrows, the Godel Semantic FG and note that we do not need to
define H, as there are no parallel edges between states.

J⟨α;α⟩pKFM,x

= J⟨α⟩(⟨α⟩p)KFM,x

6 Duarte. S.C et al.

= SG

(
TG

(
0.8, J⟨α⟩pKF

MAgM
(x,α,y)

,y

)
, TG

(
0.2, J⟨α⟩pKF

MAgM
(x,α,z)

,z

))

(In this next step, we are evaluating the formula not only in different states
but also in different models)

= SG

(
TG

(
0.8, J⟨α⟩pKFM,y

)
, TG

(
0.2, J⟨α⟩pKF

MAgM
(x,α,z)

,z

))

= SG

(
TG

(
0.8, 0

)
, TG

(
0.2, 0

))

= SG(0, 0)

= 0

In this example, J⟨α⟩pKFM,y is evaluated as 0 due to what is established for
t-conorm is Note 1. The same reasoning is used to J⟨α⟩pKF

MAgM
(x,α,z)

,z
, taking into

account that µ ̸= µAgM(x,α,z). The arrow [z, α, w] is such that µAgM(x,α,z)([z, α, w] = off.
Moreover, note that if we had replace the word within the modality by α; (p?+

β), we would need to evaluate the same proposition p at the same state z,
but in different models (one for each choice in the nondeterministic operator
+). This is one example where using a word-parameterized accessibility relation
Rα;(p?+β) : W ×W → [0, 1] would not be feasible. Indeed, if instead of p we had
a more complex formula (such as [α]⊥), this formula would be satisfied at z in
one of the models but not in the other.

4. Conclusion and future work
Labeled Fuzzy Reactive Graphs (LFRG) are structures designed to model re-
active systems which provide the activation and deactivation of resources with
actions assigned to zero-order edges. This paper proposes a fuzzy propositional
dynamic language for LFRG with concurrent composition (intersection) to per-
mit one to check properties of systems modeled by them. The paper also provides
some examples.

The proposed logic aims to generalize both the classical PDL and the one
proposed in [17] for Fuzzy Reactive Graphs, as these can be understood as a
particular case of LFRG. However, the PDL closure (also known as iteration)
operator, commonly represented by ∗, was not included in the syntax. As noted in
[17], the fuzzy reconfigurable structures can be used to finitely represent infinite
structures. As the use of the closure operator could require the consideration of
all possible reconfigurations of a model, this would lead to a possibly infinite
process.

Finally, we would like to apply this model to real-life cases with multi-agents
and resource consumption scenarios. To ease the application of these tools, we
would like to develop a computational implementation of an automatic checker.

Acknowledgments. This work is supported by FCT – Fundação para a Ciência e a Tecnolo-
gia through projects UIDB/04106/2025 at CIDMA and by National and European Funds through
SACCCT- IC&DT - Sistema de Apoio à Criação de Conhecimento Científico e Tecnológico, as part
of COMPETE2030, within the project BANKSY with reference number 15253.

Dynamic Fuzzy Language for Labeled Fuzzy Reactive Graphs 7

References

1. C. Areces, R. Fervari and G. Hoffmann, Relation-changing modal operators. Logic
Journal of the IGPL 23(4), 601-627, 2015.
https://doi.org/10.1093/jigpal/jzv020.

2. M. Baczyński and B. Jayaram, An Introduction to Fuzzy Implications, Studies in
Fuzziness and Soft Computing 231, 1-35, 2008.
https://doi.org/10.1007/978-3-540-69082-5_1

3. P. Balbiani and D. Vakarelov, Iteration-free PDL with Intersection: a Complete
Axiomatization, Fundamenta Informatica 45(3), 173-194, 2001.
https://doi.org/10.3233/FUN-2001-45302

4. J. van Benthem, An Essay on Sabotage and Obstruction, Lecture Notes in Computer
Science 2605, 268-276, Springer, 2005.
https://doi.org/10.1007/978-3-540-32254-216.

5. C. Callejas, J. Marcos and B. Bedregal, Actions of automorphisms on some classes
of fuzzy bi-implications, Mathware & Soft Computing magazine 177, 140-146, 2012.

6. S. Campos, D. Figueiredo, M. A. Martins, and R. Santiago, Labeled fuzzy reactive
graphs, Fuzzy Sets and Systems 510, 109320, 2025.
https://doi.org/10.1016/j.fss.2025.109320.

7. S. Campos, R. Santiago, M.A. Martins and D. Figueiredo, Introduction to reversal
fuzzy switch graph, Science of Computer Programming 216, 102776, 2022.
https://doi.org/10.1016/j.scico.2022.102776

8. S. Campos, R. Santiago, M. A. Martins and D. Figueiredo, Introduction to reversal
fuzzy switch graph, Science of Computer Programming 216, 102776, 2022.
https://doi.org/10.1016/j.scico.2022.102776.

9. A. Cruz, B. Bedregal and R. Santiago, On the characterizations of fuzzy implications
satisfying i(x, i(y, z)) = i(i(x, y), i(x, z)), International Journal of Approximate Rea-
soning 93, 261-276,2018.
https://doi.org/10.1016/j.ijar.2017.11.004

10. D. Figueiredo, M. A. Martins and L. S. Barbosa, A Note on Reactive Transitions
and Reo Connectors, It’s All About Coordination, Lecture Notes in Computer Sci-
ence 10865, 57-67, 2018.
https://doi.org/10.1007/978-3-319-90089-64

11. M. Fisher and R. Ladner, Propositional dynamic logic of regular programs, Journal
of Computer and System Sciences 18(2), 194-211, 1979.
https://doi.org/10.1016/0022-0000(79)90046-1

12. D. M. Gabbay and S. Marcelino, Global view on reactivity: switch graphs and their
logics, Annals of Mathematics and Artificial Intelligence 66, 131–162, Springer, 2012.
https://doi.org/10.1007/s10472-012-9316-8.

13. D. Harel, Dynamic logic, Handbook of Philosophical Logic, Synthese Library 165,
497–604, 1984.
https://doi.org/10.1007/978-94-009-6259-0_10

14. E. Klement, R. Mesiar and E. Pap, Triangular Norms, Springer, 2013.
https://doi.org/10.1007/978-94-015-9540-7

15. K. H. Lee, First course on fuzzy theory and applications. Advances in Intelligent
and Soft Computing 27, Springer, 2005.
https://doi.org/10.1007/3-540-32366-X.

16. A. Madeira, R. Neves, and M. A: Martins, An exercise on the generation of many-
valued dynamic logics, Journal of Logical and Algebraic Methods in Programming
85(5), 1011-1037, 2016.
https://doi.org/10.1016/j.jlamp.2016.03.004

8 Duarte. S.C et al.

17. R. Santiago, M. A. Martins and D. Figueiredo, Introducing fuzzy reactive graphs:
a simple application on biology, Soft Computing 25, 6759–6774, 2021.
https://doi.org/10.1007/s00500-020-05353-1.

18. K. Segerberg, A completeness theorem in the modal logic of programs, A complete-
ness theorem in the modal logic of programs 9, 31–36, 1982.
http://eudml.org/doc/209235

