Four-valued logics of indicative conditionals

M. Muñoz Pérez

Universidad Nacional de Educación a Distancia (UNED) Madrid, Spain

> ReacTS Workshop 2025 Toledo, November 11, 2025

What are indicative conditionals?

What are indicative conditionals? The simplest sentences of the *if-then* type that occur in natural language and are concerned with what could be true.

What are indicative conditionals? The simplest sentences of the *if-then* type that occur in natural language and are concerned with what could be true.

Example: if Lee Harvey-Oswald didn't shoot JFK, someone else did.

What are indicative conditionals? The simplest sentences of the *if-then* type that occur in natural language and are concerned with what could be true.

Example: if Lee Harvey-Oswald didn't shoot JFK, someone else did.

Non-example: if Lee Harvey-Oswald had not shot JFK, someone else would have.

What are indicative conditionals? The simplest sentences of the *if-then* type that occur in natural language and are concerned with what could be true.

Example: if Lee Harvey-Oswald didn't shoot JFK, someone else did.

Non-example: if Lee Harvey-Oswald had not shot JFK, someone else would have.

Hence, one ought to distinguish between indicative conditionals and counterfactuals.

What are indicative conditionals? The simplest sentences of the *if-then* type that occur in natural language and are concerned with what could be true.

Example: if Lee Harvey-Oswald didn't shoot JFK, someone else did.

Non-example: if Lee Harvey-Oswald had not shot JFK, someone else would have.

Hence, one ought to distinguish between indicative conditionals and counterfactuals.

We will denote the indicative conditional statement 'if φ then ψ ' by $\varphi \to \psi$.

Classical formalization: the indicative conditional $\varphi \to \psi$ collapses to material implication $\varphi \supset \psi$ ($\sim \neg \varphi \lor \psi$).

Classical formalization: the indicative conditional $\varphi \to \psi$ collapses to material implication $\varphi \supset \psi$ ($\sim \neg \varphi \lor \psi$).

Strange behavior of $\mathbf{0} \to x...$

Classical formalization: the indicative conditional $\varphi \to \psi$ collapses to material implication $\varphi \supset \psi$ ($\sim \neg \varphi \lor \psi$).

Strange behavior of $\mathbf{0} \to x...$ is it a 'truth-value gap'? (Quine)

Classical formalization: the indicative conditional $\varphi \to \psi$ collapses to material implication $\varphi \supset \psi$ ($\sim \neg \varphi \lor \psi$).

Strange behavior of $\mathbf{0} \to x...$ is it a 'truth-value gap'? (Quine)

Solution: add a new truth-value 1/2!

Classical formalization: the indicative conditional $\varphi \to \psi$ collapses to material implication $\varphi \supset \psi$ ($\sim \neg \varphi \lor \psi$).

Strange behavior of $\mathbf{0} \to x...$ is it a 'truth-value gap'? (Quine)

Solution: add a new truth-value 1/2!

But what about $1/2 \rightarrow x$?

Classical formalization: the indicative conditional $\varphi \to \psi$ collapses to material implication $\varphi \supset \psi$ ($\sim \neg \varphi \lor \psi$).

Strange behavior of $\mathbf{0} \to x...$ is it a 'truth-value gap'? (Quine)

Solution: add a new truth-value 1/2!

But what about $1/2 \rightarrow x$?

Here, the intuitions may differ...

		\rightarrow_{DF}	0	1/2	1	\rightarrow_{OL}	0	1/2	1	\rightarrow_{F}	0	1/2	1
0	1	0	1/2	1/2	1/2	0 1/2	1/2	1/2	1/2	0	1/2	1/2	1/2
1/2	1/2	1/2	1/2	1/2	1/2	1/2	0	1/2	1	1/2	0	1/2	1/2
1	0	1	0	1/2	1	1	0	1/2	1	1	0	1/2	1

		\rightarrow_{DF}	0	1/2	1	\rightarrow_{OL}	0	1/2	1	\rightarrow_{F}	0	1/2	1
0	1	0	1/2	1/2	1/2	0	1/2	1/2	1/2	0	1/2	1/2	1/2
1/2	1/2	1/2	1/2	1/2	1/2	1/2	0	1/2	1	1/2	0	1/2	1/2
1	0	1	0	1/2	1	0 1/2 1	0	1/2	1	1	0	1/2	1

Λĸ	0	1/2	1	٧ĸ	0	1/2	1	∧oL	0	1/2	1	Vol	0	1/2	1
0	0	0	0	0	0	1/2	1	0	0	0	0	0	0	0	1
1/2	0	1/2	1/2	1/2	1/2	1/2	1	1/2	0	1/2	1	1/2	0	1/2	1
1			1			1	1		0		1	1	1	1	1

Let $A_3:=\{0,1/2,1\}$. Our three-valued logics are:

Let $A_3 := \{0, 1/2, 1\}$. Our three-valued logics are:

– De Finetti's logic DF , induced by $\langle \mathbf{DF_3}, \{1/2, 1\} \rangle$, with $\mathbf{DF_3} := \langle A_3; \neg, \wedge_K, \vee_K, \rightarrow_{\mathsf{DF}} \rangle$.

Let $A_3 := \{0, 1/2, 1\}$. Our three-valued logics are:

- De Finetti's logic DF , induced by $\langle \mathsf{DF_3}, \{1/2, 1\} \rangle$, with $\mathsf{DF_3} := \langle A_3; \neg, \wedge_\mathsf{K}, \vee_\mathsf{K}, \rightarrow_\mathsf{DF} \rangle$.
- Cooper's logic OL , induced by $\langle \mathbf{OL_3}, \{1/2, 1\} \rangle$, with $\mathbf{OL_3} := \langle A_3; \neg, \wedge_{\mathsf{OL}}, \vee_{\mathsf{OL}}, \rightarrow_{\mathsf{OL}} \rangle$.

Let $A_3 := \{0, 1/2, 1\}$. Our three-valued logics are:

- De Finetti's logic DF , induced by $\langle \mathsf{DF_3}, \{1/2, 1\} \rangle$, with $\mathsf{DF_3} := \langle A_3; \neg, \wedge_K, \vee_K, \rightarrow_{\mathsf{DF}} \rangle$.
- Cooper's logic OL , induced by $\langle \operatorname{OL}_3, \{1/2, 1\} \rangle$, with $\operatorname{OL}_3 := \langle A_3; \neg, \wedge_{\operatorname{OL}}, \vee_{\operatorname{OL}}, \rightarrow_{\operatorname{OL}} \rangle$.
- Farrell's logic $\mathrm{F},$ induced by $\langle F_3, \{^1\!/\!2, 1\} \rangle,$ with $F_3 := \langle A_3; \neg, \wedge_K, \vee_K, \rightarrow_F \rangle.$

Let $A_3 := \{0, 1/2, 1\}$. Our three-valued logics are:

- De Finetti's logic DF, induced by $\langle \mathbf{DF_3}, \{1/2, 1\} \rangle$, with $\mathbf{DF_3} := \langle A_3; \neg, \wedge_K, \vee_K, \rightarrow_{\mathsf{DF}} \rangle$.
- Cooper's logic OL , induced by $\langle \mathbf{OL_3}, \{1/2, 1\} \rangle$, with $\mathbf{OL_3} := \langle A_3; \neg, \wedge_{\mathsf{OL}}, \vee_{\mathsf{OL}}, \rightarrow_{\mathsf{OL}} \rangle$.
- Farrell's logic F, induced by $\langle F_3, \{1/2, 1\} \rangle$, with $F_3 := \langle A_3; \neg, \wedge_K, \vee_K, \rightarrow_F \rangle$.
- Cantwell's logic CN , induced by $\langle \mathsf{CN_3}, \{^1/\!\!/2, 1\} \rangle$, with $\mathsf{CN_3} := \langle \mathsf{A_3}; \neg, \wedge_\mathsf{K}, \vee_\mathsf{K}, \to_\mathsf{OL} \rangle$.

Idea: to obtain semantics for the target logics by means of constructions in terms of already known algebras (*twist structures*).

Idea: to obtain semantics for the target logics by means of constructions in terms of already known algebras (*twist structures*).

- First, define some class of algebras associated with the logic.

Idea: to obtain semantics for the target logics by means of constructions in terms of already known algebras (*twist structures*).

- First, define some class of algebras associated with the logic.
- Then, check that every twist structure belongs to this class.

Idea: to obtain semantics for the target logics by means of constructions in terms of already known algebras (*twist structures*).

- First, define some class of algebras associated with the logic.
- Then, check that every twist structure belongs to this class.
- Finally, prove the twist representation result, i.e., that every algebra from the original class is isomorphic to some twist structure.

Idea: to obtain semantics for the target logics by means of constructions in terms of already known algebras (*twist structures*).

- First, define some class of algebras associated with the logic.
- Then, check that every twist structure belongs to this class.
- Finally, prove the twist representation result, i.e., that every algebra from the original class is isomorphic to some twist structure.

These results can be achieved for DF, OL, F and CN.

Idea: to obtain semantics for the target logics by means of constructions in terms of already known algebras (*twist structures*).

- First, define some class of algebras associated with the logic.
- Then, check that every twist structure belongs to this class.
- Finally, prove the twist representation result, i.e., that every algebra from the original class is isomorphic to some twist structure.

These results can be achieved for DF, OL, F and CN.

In short, we wish to identify:

$$\mathbf{0} \mapsto (0,1), \quad ^{1}/_{2} \mapsto (1,1), \quad \mathbf{1} \mapsto (1,0).$$

$$- \neg (x, y) := (y, x),$$

$$- \neg (x,y) := (y,x),$$

$$-(x_1,y_1) \wedge_{\mathsf{K}} (x_2,y_2) := (x_1 \wedge x_2, y_1 \vee y_2),$$

$$- \neg (x,y) := (y,x),$$

$$-(x_1,y_1) \wedge_{\mathsf{K}} (x_2,y_2) := (x_1 \wedge x_2, y_1 \vee y_2),$$

$$- (x_1, y_1) \wedge_{\mathsf{OL}} (x_2, y_2) := (x_1 \wedge x_2, (x_1 \to y_2) \wedge (x_2 \to y_1)),$$

Suppose that our factor algebras behave in a Boolean way. Then, the conectives look as follows:

- $\neg (x,y) := (y,x),$
- $-(x_1,y_1) \wedge_{\mathsf{K}} (x_2,y_2) := (x_1 \wedge x_2, y_1 \vee y_2),$
- $-(x_1,y_1) \wedge_{\mathsf{OL}} (x_2,y_2) := (x_1 \wedge x_2, (x_1 \to y_2) \wedge (x_2 \to y_1)),$
- $-(x_1,y_1) \rightarrow_{\mathsf{DF}} (x_2,y_2) = (y_1 \lor (x_1 \land x_2), y_1 \lor y_2),$

Suppose that our factor algebras behave in a Boolean way. Then, the conectives look as follows:

$$- \neg (x,y) := (y,x),$$

$$-(x_1,y_1) \wedge_{\mathsf{K}} (x_2,y_2) := (x_1 \wedge x_2, y_1 \vee y_2),$$

$$-(x_1,y_1) \wedge_{\mathsf{OL}} (x_2,y_2) := (x_1 \wedge x_2, (x_1 \to y_2) \wedge (x_2 \to y_1)),$$

$$-(x_1,y_1) \rightarrow_{\mathsf{DF}} (x_2,y_2) = (y_1 \lor (x_1 \land x_2), y_1 \lor y_2),$$

$$-(x_1,y_1) \rightarrow_{\mathsf{OL}} (x_2,y_2) := (x_1 \rightarrow x_2, x_1 \rightarrow y_2),$$

Suppose that our factor algebras behave in a Boolean way. Then, the conectives look as follows:

$$- \neg (x,y) := (y,x),$$

$$-(x_1,y_1) \wedge_{\mathsf{K}} (x_2,y_2) := (x_1 \wedge x_2, y_1 \vee y_2),$$

$$-(x_1,y_1) \wedge_{\mathsf{OL}} (x_2,y_2) := (x_1 \wedge x_2, (x_1 \to y_2) \wedge (x_2 \to y_1)),$$

$$-(x_1,y_1) \rightarrow_{\mathsf{DF}} (x_2,y_2) = (y_1 \lor (x_1 \land x_2), y_1 \lor y_2),$$

$$-(x_1,y_1) \rightarrow_{\mathsf{OL}} (x_2,y_2) := (x_1 \rightarrow x_2, x_1 \rightarrow y_2),$$

$$-(x_1,y_1) \rightarrow_{\mathsf{F}} (x_2,y_2) := (x_1 \rightarrow x_2,y_1 \vee y_2).$$

Suppose that our factor algebras behave in a Boolean way. Then, the conectives look as follows:

$$- \neg(x,y) := (y,x),$$

$$- (x_1,y_1) \land_{\mathsf{K}} (x_2,y_2) := (x_1 \land x_2, y_1 \lor y_2),$$

$$- (x_1,y_1) \land_{\mathsf{OL}} (x_2,y_2) := (x_1 \land x_2, (x_1 \to y_2) \land (x_2 \to y_1)),$$

$$- (x_1,y_1) \to_{\mathsf{DF}} (x_2,y_2) = (y_1 \lor (x_1 \land x_2), y_1 \lor y_2),$$

$$- (x_1,y_1) \to_{\mathsf{OL}} (x_2,y_2) := (x_1 \to x_2, x_1 \to y_2),$$

$$- (x_1,y_1) \to_{\mathsf{F}} (x_2,y_2) := (x_1 \to x_2, y_1 \lor y_2).$$

Let us denote $\top := 1/2$ in what follows.

Suppose that our factor algebras behave in a Boolean way. Then, the conectives look as follows:

$$-\neg(x,y) := (y,x),$$

$$-(x_1,y_1) \land_{\mathsf{K}} (x_2,y_2) := (x_1 \land x_2, y_1 \lor y_2),$$

$$-(x_1,y_1) \land_{\mathsf{OL}} (x_2,y_2) := (x_1 \land x_2, (x_1 \to y_2) \land (x_2 \to y_1)),$$

$$-(x_1,y_1) \to_{\mathsf{DF}} (x_2,y_2) = (y_1 \lor (x_1 \land x_2), y_1 \lor y_2),$$

$$-(x_1,y_1) \to_{\mathsf{OL}} (x_2,y_2) := (x_1 \to x_2, x_1 \to y_2),$$

Let us denote $\top := 1/2$ in what follows. What if we send:

 $-(x_1, y_1) \rightarrow_{\mathsf{F}} (x_2, y_2) := (x_1 \rightarrow x_2, y_1 \lor y_2).$

$$\perp \mapsto (0,0)$$

and compute the tables?

The tables look as follows:

					\rightarrow OL									
					0									
	0	\perp	0	1	1	Т	Т	Т	T	1	T	1	Т	1
Т	Т	Т	Τ	T	T	0	\perp	\top	1	T	0	0	Τ	Τ
1				1		n	1	Т	1	1	n	- 1	Т	1

The tables look as follows:

					\rightarrow oL									
					0									
	0	\perp	0		1	Т	Т	Т	Т		Т	1	Т	1
Т	Т	Т	\top	T	T	0	\perp	\top	1	T	0	0	\top	Т
1	0	\perp	\top	1	1	0	\perp	\top	1	1	0	\perp	\top	1

In addition,

	_	\wedge_{K}	0	T	Τ	1	^oL	0	T	Т	1
0	1	0	0	0	0	0	0	0	0	0	0
1		1	0	Т	0	T	0 	0	0	\perp	\perp
T	T	T	0	0	\top	T	T	0	\perp	Т	1
1	0	1	0	\perp	Т	1	1	0	\perp	1	1

Where one sets

$$x \vee_{\mathsf{K}} y := \neg(\neg x \wedge_{\mathsf{K}} \neg y),$$

 $x \vee_{\mathsf{OL}} y := \neg(\neg x \wedge_{\mathsf{OL}} \neg y).$

Let $\mathcal{A}_4 := \{ \mathbf{0}, \bot, \top, \mathbf{1} \}$. Our four-valued logics are:

Let $A_4 := \{0, \perp, \top, 1\}$. Our four-valued logics are:

- DFg, induced by $\langle \mathbf{DFg}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{DFg} := \langle A_4; \neg, \wedge_K, \vee_K, \rightarrow_{\mathsf{DF}} \rangle$.

Let $A_4 := \{\mathbf{0}, \bot, \top, \mathbf{1}\}$. Our four-valued logics are:

- DFg , induced by $\langle \mathbf{DFg}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{DFg} := \langle A_4; \neg, \wedge_K, \vee_K, \rightarrow_{\mathsf{DF}} \rangle$.
- $\ \mathrm{OLg}, \ \mathsf{induced} \ \mathsf{by} \ \langle \mathbf{OLg}, \{\top, \mathbf{1}\} \rangle, \ \mathsf{with} \ \mathbf{OLg} := \langle A_4; \neg, \wedge_{\mathsf{OL}}, \vee_{\mathsf{OL}}, \rightarrow_{\mathsf{OL}} \rangle.$

Let $A_4 := \{\mathbf{0}, \bot, \top, \mathbf{1}\}$. Our four-valued logics are:

- DFg , induced by $\langle \mathbf{DFg}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{DFg} := \langle A_4; \neg, \wedge_K, \vee_K, \rightarrow_{\mathsf{DF}} \rangle$.
- $\ \mathrm{OLg}, \ \mathsf{induced} \ \mathsf{by} \ \langle \mathbf{OLg}, \{\top, \mathbf{1}\} \rangle, \ \mathsf{with} \ \mathbf{OLg} := \langle A_4; \neg, \wedge_{\mathsf{OL}}, \vee_{\mathsf{OL}}, \rightarrow_{\mathsf{OL}} \rangle.$
- Fg, induced by $\langle \mathbf{Fg}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{Fg} := \langle A_4; \neg, \wedge_K, \vee_K, \rightarrow_F \rangle$.

Let $A_4 := \{\mathbf{0}, \bot, \top, \mathbf{1}\}$. Our four-valued logics are:

- DFg , induced by $\langle \mathbf{DFg}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{DFg} := \langle A_4; \neg, \wedge_K, \vee_K, \rightarrow_{\mathsf{DF}} \rangle$.
- $\ \mathrm{OLg}, \ \mathsf{induced} \ \mathsf{by} \ \langle \mathbf{OLg}, \{\top, \mathbf{1}\} \rangle, \ \mathsf{with} \ \mathbf{OLg} := \langle A_4; \neg, \wedge_{\mathsf{OL}}, \vee_{\mathsf{OL}}, \rightarrow_{\mathsf{OL}} \rangle.$
- Fg, induced by $\langle \mathbf{Fg}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{Fg} := \langle A_4; \neg, \wedge_K, \vee_K, \rightarrow_F \rangle$.
- CNg, induced by $\langle \mathbf{CNg}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{CNg} := \langle A_4; \neg, \wedge_K, \vee_K, \rightarrow_{\mathsf{OL}} \rangle$.

Let $A_4 := \{\mathbf{0}, \bot, \top, \mathbf{1}\}$. Our four-valued logics are:

- DFg , induced by $\langle \mathbf{DFg}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{DFg} := \langle A_4; \neg, \wedge_K, \vee_K, \rightarrow_{\mathsf{DF}} \rangle$.
- $\ \mathrm{OLg}, \ \mathsf{induced} \ \mathsf{by} \ \langle \mathbf{OLg}, \{\top, \mathbf{1}\} \rangle, \ \mathsf{with} \ \mathbf{OLg} := \langle A_4; \neg, \wedge_{\mathsf{OL}}, \vee_{\mathsf{OL}}, \rightarrow_{\mathsf{OL}} \rangle.$
- Fg, induced by $\langle \mathbf{Fg}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{Fg} := \langle A_4; \neg, \wedge_K, \vee_K, \rightarrow_F \rangle$.
- $\ \mathrm{CNg}, \ \mathsf{induced} \ \ \mathsf{by} \ \ \langle \mathsf{CNg}, \{\top, 1\} \rangle, \ \ \mathsf{with} \ \ \mathsf{CNg} := \langle \mathcal{A}_4; \neg, \wedge_\mathsf{K}, \vee_\mathsf{K}, \rightarrow_\mathsf{OL} \rangle.$

Then, it turns out that one can prove twist representation results for $\mathrm{DFg},\mathrm{CNg}$ and $\mathrm{Fg}.$

In the previous approach, one could see \top and \bot as corresponding to semantic *gluts* and *gaps*, respectively.

In the previous approach, one could see \top and \bot as corresponding to semantic gluts and gaps, respectively.

However, one could see \top and \bot as representing *vacuously true* and *vacuously false* statements.

In the previous approach, one could see \top and \bot as corresponding to semantic gluts and gaps, respectively.

However, one could see \top and \bot as representing *vacuously true* and *vacuously false* statements.

This entails a different behavior with respect to negation.

In the previous approach, one could see \top and \bot as corresponding to semantic gluts and gaps, respectively.

However, one could see \top and \bot as representing *vacuously true* and *vacuously false* statements.

This entails a different behavior with respect to negation. We wish to define:

$$-(x,y):=(\neg x,\neg y).$$

In the previous approach, one could see \top and \bot as corresponding to semantic gluts and gaps, respectively.

However, one could see \top and \bot as representing *vacuously true* and *vacuously false* statements.

This entails a different behavior with respect to negation. We wish to define:

$$-(x,y):=(\neg x,\neg y).$$

Hence, we extend the tables above with:

	_
0	1
上	T
Т	上
1	0

Let $\mathcal{A}_4 := \{ \boldsymbol{0}, \bot, \top, \boldsymbol{1} \}.$ Accordingly, we can define:

Let $A_4 := \{\mathbf{0}, \bot, \top, \mathbf{1}\}$. Accordingly, we can define:

- DFf^- , induced by $\langle \mathbf{DFf}^-, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{DFf}^- := \langle A_4; -, \wedge_K, \vee_K, \top \rangle$.

Let $A_4 := \{\mathbf{0}, \bot, \top, \mathbf{1}\}$. Accordingly, we can define:

- DFf^- , induced by $\langle \mathbf{DFf}^-, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{DFf}^- := \langle A_4; -, \wedge_K, \vee_K, \top \rangle$.
- DFf, induced by $\langle \mathbf{DFf}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{DFf} := \langle A_4; -, \wedge_K, \vee_K, \rightarrow_{\mathsf{DF}} \rangle$.

Let $A_4 := \{\mathbf{0}, \bot, \top, \mathbf{1}\}$. Accordingly, we can define:

- DFf^- , induced by $\langle \mathbf{DFf}^-, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{DFf}^- := \langle A_4; -, \wedge_K, \vee_K, \top \rangle$.
- DFf , induced by $\langle \mathbf{DFf}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{DFf} := \langle A_4; -, \wedge_K, \vee_K, \rightarrow_{\mathsf{DF}} \rangle$.
- OLf, induced by $\langle OLf, \{\top, 1\} \rangle$, with $OLf := \langle A_4; -, \wedge_{OL}, \vee_{OL}, \rightarrow_{OL} \rangle$.

Let $A_4 := \{0, \perp, \top, 1\}$. Accordingly, we can define:

- DFf^- , induced by $\langle \mathbf{DFf}^-, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{DFf}^- := \langle A_4; -, \wedge_K, \vee_K, \top \rangle$.
- $\ \mathrm{DFf}, \ \mathsf{induced} \ \mathsf{by} \ \langle \mathsf{DFf}, \{\top, \mathbf{1}\} \rangle, \ \mathsf{with} \ \mathsf{DFf} := \langle A_4; -, \wedge_{\mathsf{K}}, \vee_{\mathsf{K}}, \rightarrow_{\mathsf{DF}} \rangle.$
- OLf , induced by $\langle \mathbf{OLf}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{OLf} := \langle A_4; -, \wedge_{\mathsf{OL}}, \vee_{\mathsf{OL}}, \rightarrow_{\mathsf{OL}} \rangle$.
- Ff, induced by $\langle \mathbf{Ff}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{Ff} := \langle A_4; -, \wedge_K, \vee_K, \rightarrow_F \rangle$.

Let $A_4 := \{\mathbf{0}, \bot, \top, \mathbf{1}\}$. Accordingly, we can define:

- DFf^- , induced by $\langle \mathbf{DFf}^-, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{DFf}^- := \langle A_4; -, \wedge_K, \vee_K, \top \rangle$.
- $\ \mathrm{DFf}, \ \mathsf{induced} \ \mathsf{by} \ \langle \mathsf{DFf}, \{\top, \mathbf{1}\} \rangle, \ \mathsf{with} \ \mathsf{DFf} := \langle A_4; -, \wedge_{\mathsf{K}}, \vee_{\mathsf{K}}, \rightarrow_{\mathsf{DF}} \rangle.$
- OLf , induced by $\langle \mathbf{OLf}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{OLf} := \langle A_4; -, \wedge_{\mathsf{OL}}, \vee_{\mathsf{OL}}, \rightarrow_{\mathsf{OL}} \rangle$.
- Ff, induced by $\langle \mathbf{Ff}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{Ff} := \langle A_4; -, \wedge_K, \vee_K, \rightarrow_F \rangle$.
- CNf, induced by $\langle CNf, \{\top, 1\} \rangle$, with $CNf := \langle A_4; -, \wedge_K, \vee_K, \rightarrow_{OL} \rangle$.

Let $A_4 := \{\mathbf{0}, \bot, \top, \mathbf{1}\}$. Accordingly, we can define:

- DFf^- , induced by $\langle \mathbf{DFf}^-, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{DFf}^- := \langle A_4; -, \wedge_K, \vee_K, \top \rangle$.
- $\ \mathrm{DFf}, \ \mathsf{induced} \ \mathsf{by} \ \langle \mathsf{DFf}, \{\top, \mathbf{1}\} \rangle, \ \mathsf{with} \ \mathsf{DFf} := \langle A_4; -, \wedge_{\mathsf{K}}, \vee_{\mathsf{K}}, \rightarrow_{\mathsf{DF}} \rangle.$
- $\ \mathrm{OLf, induced \ by} \ \langle \mathbf{OLf}, \{\top, \mathbf{1}\} \rangle, \ \text{with} \ \mathbf{OLf} := \langle A_4; -, \wedge_{\mathsf{OL}}, \vee_{\mathsf{OL}}, \rightarrow_{\mathsf{OL}} \rangle.$
- Ff, induced by $\langle \mathbf{Ff}, \{\top, \mathbf{1}\} \rangle$, with $\mathbf{Ff} := \langle A_4; -, \wedge_K, \vee_K, \rightarrow_F \rangle$.
- CNf , induced by $\langle \mathsf{CNf}, \{\top, \mathbf{1}\} \rangle$, with $\mathsf{CNf} := \langle A_4; -, \wedge_K, \vee_K, \rightarrow_{\mathsf{OL}} \rangle$.

Then, one can prove twist representation results for DFf⁻ and Ff.

i. Study the cases of OLg, OLf, DFf and CNf.

- i. Study the cases of OLg, OLf, DFf and CNf.
- ii. Study the implications of the twist representation results.

- i. Study the cases of OLg, OLf, DFf and CNf.
- ii. Study the implications of the twist representation results.
- iii. Study algebraizability and axiomatizability issues regarding the new logics.

- i. Study the cases of OLg, OLf, DFf and CNf.
- ii. Study the implications of the twist representation results.
- iii. Study algebraizability and axiomatizability issues regarding the new logics.
- iv. Provide a more systematic philosophical account for the new logics.

Bibliography

Cantwell, J. (2008)

The logic of conditional negation.

Notre Dame Journal of Formal Logic 49(3): 245-260.

Cooper, W.S. (1968)

The Propositional Logic of Ordinary Discourse.

Inquiry: An Interdisciplinary Journal of Philosophy 11(1-4), 295–320.

Egré, P., Rossi, L. & Sprenger, J. (2021)

De Finettian logics of indicative conditionals part I: trivalent semantics and validity. Journal of Philosophical Logic 50(2), 187–213.

Farrell, R.J. (1986)

Implication and presupposition.

Notre Dame Journal of Formal Logic, Volume 27, Number 1.

Greati, V., Marcelino, S. & Rivieccio, U. (2025)

Axiomatizing the Logic of Ordinary Discourse.

Proceedings of IPMU 2024, 390-405.

Bibliography

Greati, V., Marcelino, S., Rivieccio, U. & Muñoz Pérez, M. (2026)

Analytic calculi for logics of indicative conditionals.

In: Pozzato, G. L., Uustalu, T. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2025. Lecture Notes in Computer Science(), vol 15980. Springer, Cham.

de Finetti, B. (1936)

La logique de la probabilité.

Actes du Congrés International de Philosophie Scientifique.

Muñoz Pérez, M. & Rivieccio, U. (2025)

Indicative conditionals: Some algebraic considerations.

In Kozen, D. & de Queiroz, R. (eds) Logic, Language, Information, and Computation, WoLLIC 2025, Lecture Notes in Computer Science, vol. 15942, Springer

Muñoz Pérez, M. (2025)

Four-valued logics of indicative conditionals.

Preprint, available at arXiv.org.

Rivieccio, U. (2025)

The algebra of ordinary discourse. On the semantics of Cooper's logic.

Archive for Mathematical Logic.

