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1. Formalizing indicative conditionals

What are indicative conditionals? The simplest sentences of the if-then type
that occur in natural language and are concerned with what could be true.

Example: if Lee Harvey-Oswald didn’t shoot JFK, someone else did.

Non-example: if Lee Harvey-Oswald had not shot JFK, someone else would
have.

Hence, one ought to distinguish between indicative conditionals and
counterfactuals.

We will denote the indicative conditional statement ‘if φ then ψ’ by φ→ ψ.
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1. Formalizing indicative conditionals

Classical formalization: the indicative conditional φ→ ψ collapses to material
implication φ ⊃ ψ (∼ ¬φ ∨ ψ).

Strange behavior of 0 → x ... is it a ‘truth-value gap’? (Quine)

Solution: add a new truth-value 1/2!

But what about 1/2 → x?

Here, the intuitions may differ...
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2. The three-valued case

¬
0 1
1/2 1/2
1 0

→DF 0 1/2 1
0 1/2 1/2 1/2
1/2 1/2 1/2 1/2
1 0 1/2 1

→OL 0 1/2 1
0 1/2 1/2 1/2
1/2 0 1/2 1
1 0 1/2 1

→F 0 1/2 1
0 1/2 1/2 1/2
1/2 0 1/2 1/2
1 0 1/2 1

∧K 0 1/2 1
0 0 0 0
1/2 0 1/2 1/2
1 0 1/2 1

∨K 0 1/2 1
0 0 1/2 1
1/2 1/2 1/2 1
1 1 1 1

∧OL 0 1/2 1
0 0 0 0
1/2 0 1/2 1
1 0 1 1

∨OL 0 1/2 1
0 0 0 1
1/2 0 1/2 1
1 1 1 1
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2. The three-valued case

Let A3 := {0, 1/2, 1}. Our three-valued logics are:

– De Finetti’s logic DF, induced by ⟨DF3, {1/2, 1}⟩, with
DF3 := ⟨A3;¬,∧K,∨K,→DF⟩.

– Cooper’s logic OL, induced by ⟨OL3, {1/2, 1}⟩, with
OL3 := ⟨A3;¬,∧OL,∨OL,→OL⟩.

– Farrell’s logic F, induced by ⟨F3, {1/2, 1}⟩, with
F3 := ⟨A3;¬,∧K,∨K,→F⟩.

– Cantwell’s logic CN, induced by ⟨CN3, {1/2, 1}⟩, with
CN3 := ⟨A3;¬,∧K,∨K,→OL⟩.
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3. Twist structures

Idea: to obtain semantics for the target logics by means of constructions in
terms of already known algebras (twist structures).

– First, define some class of algebras associated with the logic.

– Then, check that every twist structure belongs to this class.

– Finally, prove the twist representation result, i.e., that every algebra from
the original class is isomorphic to some twist structure.

These results can be achieved for DF, OL, F and CN.

In short, we wish to identify:

0 7→ (0, 1), 1/2 7→ (1, 1), 1 7→ (1, 0).
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4. The four-valued case

Suppose that our factor algebras behave in a Boolean way. Then, the conectives
look as follows:

– ¬(x , y) := (y , x),

– (x1, y1) ∧K (x2, y2) := (x1 ∧ x2, y1 ∨ y2),

– (x1, y1) ∧OL (x2, y2) := (x1 ∧ x2, (x1 → y2) ∧ (x2 → y1)),

– (x1, y1) →DF (x2, y2) = (y1 ∨ (x1 ∧ x2), y1 ∨ y2),

– (x1, y1) →OL (x2, y2) := (x1 → x2, x1 → y2),

– (x1, y1) →F (x2, y2) := (x1 → x2, y1 ∨ y2).

Let us denote ⊤ := 1/2 in what follows. What if we send:

⊥ 7→ (0, 0)

and compute the tables?
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and compute the tables?
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4.1. Adding a semantic gap

The tables look as follows:

→DF 0 ⊥ ⊤ 1
0 ⊤ ⊤ ⊤ ⊤
⊥ 0 ⊥ 0 ⊥
⊤ ⊤ ⊤ ⊤ ⊤
1 0 ⊥ ⊤ 1

→OL 0 ⊥ ⊤ 1
0 ⊤ ⊤ ⊤ ⊤
⊥ ⊤ ⊤ ⊤ ⊤
⊤ 0 ⊥ ⊤ 1
1 0 ⊥ ⊤ 1

→F 0 ⊥ ⊤ 1
0 ⊤ ⊤ ⊤ ⊤
⊥ ⊤ 1 ⊤ 1
⊤ 0 0 ⊤ ⊤
1 0 ⊥ ⊤ 1

In addition,

¬
0 1
⊥ ⊥
⊤ ⊤
1 0

∧K 0 ⊥ ⊤ 1
0 0 0 0 0
⊥ 0 ⊤ 0 ⊤
⊤ 0 0 ⊤ ⊤
1 0 ⊥ ⊤ 1

∧OL 0 ⊥ ⊤ 1
0 0 0 0 0
⊥ 0 0 ⊥ ⊥
⊤ 0 ⊥ ⊤ 1
1 0 ⊥ 1 1

Where one sets
x ∨K y := ¬(¬x ∧K ¬y),

x ∨OL y := ¬(¬x ∧OL ¬y).
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4.1. Adding a semantic gap

Let A4 := {0,⊥,⊤, 1}. Our four-valued logics are:

– DFg, induced by ⟨DFg, {⊤, 1}⟩, with DFg := ⟨A4;¬,∧K,∨K,→DF⟩.

– OLg, induced by ⟨OLg, {⊤, 1}⟩, with OLg := ⟨A4;¬,∧OL,∨OL,→OL⟩.

– Fg, induced by ⟨Fg, {⊤, 1}⟩, with Fg := ⟨A4;¬,∧K,∨K,→F⟩.

– CNg, induced by ⟨CNg, {⊤, 1}⟩, with CNg := ⟨A4;¬,∧K,∨K,→OL⟩.

Then, it turns out that one can prove twist representation results for DFg,CNg
and Fg.
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4.2. Adding a falsity

In the previous approach, one could see ⊤ and ⊥ as corresponding to semantic
gluts and gaps, respectively.

However, one could see ⊤ and ⊥ as representing vacuously true and vacuously
false statements.

This entails a different behavior with respect to negation. We wish to define:

−(x , y) := (¬x ,¬y).

Hence, we extend the tables above with:

−
0 1
⊥ ⊤
⊤ ⊥
1 0
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4.2. Adding a falsity

Let A4 := {0,⊥,⊤, 1}. Accordingly, we can define:

– DFf−, induced by ⟨DFf−, {⊤, 1}⟩, with DFf− := ⟨A4;−,∧K,∨K,⊤⟩.

– DFf, induced by ⟨DFf, {⊤, 1}⟩, with DFf := ⟨A4;−,∧K,∨K,→DF⟩.

– OLf, induced by ⟨OLf, {⊤, 1}⟩, with OLf := ⟨A4;−,∧OL,∨OL,→OL⟩.

– Ff, induced by ⟨Ff, {⊤, 1}⟩, with Ff := ⟨A4;−,∧K,∨K,→F⟩.

– CNf, induced by ⟨CNf, {⊤, 1}⟩, with CNf := ⟨A4;−,∧K,∨K,→OL⟩.

Then, one can prove twist representation results for DFf− and Ff.
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5. Further work

i. Study the cases of OLg, OLf, DFf and CNf.

ii. Study the implications of the twist representation results.

iii. Study algebraizability and axiomatizability issues regarding the new logics.

iv. Provide a more systematic philosophical account for the new logics.
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