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Example: if Lee Harvey-Oswald didn't shoot JFK, someone else did.
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have.

Hence, one ought to distinguish between indicative conditionals and

counterfactuals.
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1. Formalizing indicative conditionals

Classical formalization: the indicative conditional ¢ — 1 collapses to material
implication ¢ D ¥ (~ = V ).

Strange behavior of 0 — x... is it a ‘truth-value gap'? (Quine)

Solution: add a new truth-value 1/2!

But what about 1/2 — x?

Here, the intuitions may differ...
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Idea: to obtain semantics for the target logics by means of constructions in
terms of already known algebras (twist structures).

— First, define some class of algebras associated with the logic.
— Then, check that every twist structure belongs to this class.

— Finally, prove the twist representation result, i.e., that every algebra from
the original class is isomorphic to some twist structure.

These results can be achieved for DF, OL, F and CN.

In short, we wish to identify:

0 (0,1), 12+ (1,1), 1+ (1,0).
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4. The four-valued case

Suppose that our factor algebras behave in a Boolean way. Then, the conectives
look as follows:

- ~(xy) =y, x),

= (x1,51) Ak (X2, y2) == (1 A xa, 1V ya),

= (x1,51) oL (x2,¥2) i= (x1 A xa, (X1 = y2) A (2 = y1))s

- (a,:1) —oF (2,52) = (1 V (x Axe) vV y2),

= (x1,71) —oL (x2,¥2) = (x1 = X2, x1 = ¥2),

= (1) =F (e, y2) = (a = x2, 01V y2).

Let us denote T :=1/2 in what follows. What if we send:

1~ (0,0)

and compute the tables?
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Where one sets

X VK y = =(=x Ak 7y),

—\(—|X /\OL —\y)

xVoLYy:
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OLg, induced by <0|.g7 {T, 1}>, with OLg = <A4; -, \oL, VoL, —>o|_>.

Fg, induced by (Fg, {T,1}), with Fg := (As; =, Ak, Vk, —E)-

— CNg, induced by (CNg, {T,1}), with CNg := (A4; -, Ak, Vk, —oL)-

Then, it turns out that one can prove twist representation results for DFg, CNg
and Fg.
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4.2. Adding a falsity

In the previous approach, one could see T and L as corresponding to semantic
gluts and gaps, respectively.

However, one could see T and L as representing vacuously true and vacuously
false statements.

This entails a different behavior with respect to negation. We wish to define:
_(Xa .y) = (ﬁx7 ﬁ}/)

Hence, we extend the tables above with:

n-—H—o‘
o}——h—*‘l
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Then, one can prove twist representation results for DFf™ and Ff.
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5. Further work

. Study the cases of OLg, OLf, DFf and CNf.

. Study the implications of the twist representation results.

Study algebraizability and axiomatizability issues regarding the new logics.

. Provide a more systematic philosophical account for the new logics.
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